import torch import torch.nn as nn import torch.nn.functional as F from typing import List from .gelan_basic import RepGElanLayer, ADown # PaFPN-ELAN class GElanPaFPN(nn.Module): def __init__(self, cfg, in_dims :List = [256, 512, 256], ) -> None: super(GElanPaFPN, self).__init__() print('==============================') print('FPN: {}'.format("GELAN PaFPN")) # --------------------------- Basic Parameters --------------------------- self.in_dims = in_dims[::-1] self.out_dims = [cfg.fpn_feats_td["p3"][1], cfg.fpn_feats_bu["p4"][1], cfg.fpn_feats_bu["p5"][1]] # ---------------- Top dwon ---------------- ## P5 -> P4 self.top_down_layer_1 = RepGElanLayer(in_dim = self.in_dims[0] + self.in_dims[1], inter_dims = cfg.fpn_feats_td["p4"][0], out_dim = cfg.fpn_feats_td["p4"][1], num_blocks = cfg.fpn_depth, shortcut = False, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) ## P4 -> P3 self.top_down_layer_2 = RepGElanLayer(in_dim = cfg.fpn_feats_td["p4"][1] + self.in_dims[2], inter_dims = cfg.fpn_feats_td["p3"][0], out_dim = cfg.fpn_feats_td["p3"][1], num_blocks = cfg.fpn_depth, shortcut = False, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) # ---------------- Bottom up ---------------- ## P3 -> P4 self.dowmsample_layer_1 = ADown(cfg.fpn_feats_td["p3"][1], cfg.fpn_feats_td["p3"][1], act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) self.bottom_up_layer_1 = RepGElanLayer(in_dim = cfg.fpn_feats_td["p3"][1] + cfg.fpn_feats_td["p4"][1], inter_dims = cfg.fpn_feats_bu["p4"][0], out_dim = cfg.fpn_feats_bu["p4"][1], num_blocks = cfg.fpn_depth, shortcut = False, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) ## P4 -> P5 self.dowmsample_layer_2 = ADown(cfg.fpn_feats_bu["p4"][1], cfg.fpn_feats_bu["p4"][1], act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) self.bottom_up_layer_2 = RepGElanLayer(in_dim = cfg.fpn_feats_td["p4"][1] + self.in_dims[0], inter_dims = cfg.fpn_feats_bu["p5"][0], out_dim = cfg.fpn_feats_bu["p5"][1], num_blocks = cfg.fpn_depth, shortcut = False, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, features): c3, c4, c5 = features # ------------------ Top down FPN ------------------ ## P5 -> P4 p5_up = F.interpolate(c5, scale_factor=2.0) p4 = self.top_down_layer_1(torch.cat([p5_up, c4], dim=1)) ## P4 -> P3 p4_up = F.interpolate(p4, scale_factor=2.0) p3 = self.top_down_layer_2(torch.cat([p4_up, c3], dim=1)) # ------------------ Bottom up FPN ------------------ ## p3 -> P4 p3_ds = self.dowmsample_layer_1(p3) p4 = self.bottom_up_layer_1(torch.cat([p3_ds, p4], dim=1)) ## P4 -> 5 p4_ds = self.dowmsample_layer_2(p4) p5 = self.bottom_up_layer_2(torch.cat([p4_ds, c5], dim=1)) out_feats = [p3, p4, p5] # [P3, P4, P5] return out_feats