import torch import torch.nn as nn from .gelan_basic import BasicConv # SPPF (from yolov5) class SPPF(nn.Module): """ This code referenced to https://github.com/ultralytics/yolov5 """ def __init__(self, cfg, in_dim, out_dim): super().__init__() ## ----------- Basic Parameters ----------- inter_dim = round(in_dim * cfg.neck_expand_ratio) self.out_dim = out_dim ## ----------- Network Parameters ----------- self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=1, padding=0, stride=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.cv2 = BasicConv(inter_dim * 4, out_dim, kernel_size=1, padding=0, stride=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.m = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size, stride=1, padding=cfg.spp_pooling_size // 2) # Initialize all layers self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, x): x = self.cv1(x) y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) # SPP-ELAN (from yolov9) class SPPElan(nn.Module): def __init__(self, cfg, in_dim): """SPPElan looks like the SPPF.""" super().__init__() ## ----------- Basic Parameters ----------- self.in_dim = in_dim self.inter_dim = cfg.spp_inter_dim self.out_dim = cfg.spp_out_dim ## ----------- Network Parameters ----------- self.conv_layer_1 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.conv_layer_2 = BasicConv(self.inter_dim * 4, self.out_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.pool_layer = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size, stride=1, padding=cfg.spp_pooling_size // 2) # Initialize all layers self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, x): y = [self.conv_layer_1(x)] y.extend(self.pool_layer(y[-1]) for _ in range(3)) return self.conv_layer_2(torch.cat(y, 1))