import os import cv2 import time import random import numpy as np from torch.utils.data import Dataset from pycocotools.coco import COCO try: from .data_augment.strong_augment import MosaicAugment, MixupAugment except: from data_augment.strong_augment import MosaicAugment, MixupAugment voc_class_indexs = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] voc_class_labels = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') class VOCDataset(Dataset): def __init__(self, cfg, data_dir :str = None, transform = None, is_train :bool = False, ): # ----------- Basic parameters ----------- self.data_dir = data_dir self.image_set = "train" if is_train else "val" self.is_train = is_train self.num_classes = 20 # ----------- Data parameters ----------- self.json_file = "instances_{}.json".format(self.image_set) self.coco = COCO(os.path.join(self.data_dir, 'annotations', self.json_file)) self.ids = self.coco.getImgIds() self.class_ids = sorted(self.coco.getCatIds()) self.dataset_size = len(self.ids) self.class_labels = voc_class_labels self.class_indexs = voc_class_indexs # ----------- Transform parameters ----------- self.transform = transform if is_train: self.mosaic_prob = cfg.mosaic_prob self.mixup_prob = cfg.mixup_prob self.copy_paste = cfg.copy_paste self.mosaic_augment = None if cfg.mosaic_prob == 0. else MosaicAugment(cfg.train_img_size, cfg.affine_params, is_train) self.mixup_augment = None if cfg.mixup_prob == 0. and cfg.copy_paste == 0. else MixupAugment(cfg.train_img_size) else: self.mosaic_prob = 0.0 self.mixup_prob = 0.0 self.copy_paste = 0.0 self.mosaic_augment = None self.mixup_augment = None print('==============================') print('use Mosaic Augmentation: {}'.format(self.mosaic_prob)) print('use Mixup Augmentation: {}'.format(self.mixup_prob)) print('use Copy-paste Augmentation: {}'.format(self.copy_paste)) # ------------ Basic dataset function ------------ def __len__(self): return len(self.ids) def __getitem__(self, index): return self.pull_item(index) # ------------ Mosaic & Mixup ------------ def load_mosaic(self, index): # ------------ Prepare 4 indexes of images ------------ ## Load 4x mosaic image index_list = np.arange(index).tolist() + np.arange(index+1, len(self.ids)).tolist() id1 = index id2, id3, id4 = random.sample(index_list, 3) indexs = [id1, id2, id3, id4] ## Load images and targets image_list = [] target_list = [] for index in indexs: img_i, target_i = self.load_image_target(index) image_list.append(img_i) target_list.append(target_i) # ------------ Mosaic augmentation ------------ image, target = self.mosaic_augment(image_list, target_list) return image, target def load_mixup(self, origin_image, origin_target, yolox_style=False): # ------------ Load a new image & target ------------ if yolox_style: new_index = np.random.randint(0, len(self.ids)) new_image, new_target = self.load_image_target(new_index) else: new_index = np.random.randint(0, len(self.ids)) new_image, new_target = self.load_mosaic(new_index) # ------------ Mixup augmentation ------------ image, target = self.mixup_augment(origin_image, origin_target, new_image, new_target, yolox_style) return image, target # ------------ Load data function ------------ def load_image_target(self, index): # load an image image, _ = self.pull_image(index) height, width, channels = image.shape # load a target bboxes, labels = self.pull_anno(index) target = { "boxes": bboxes, "labels": labels, "orig_size": [height, width] } return image, target def pull_item(self, index): if random.random() < self.mosaic_prob: # load a mosaic image mosaic = True image, target = self.load_mosaic(index) else: mosaic = False # load an image and target image, target = self.load_image_target(index) # Yolov5-MixUp mixup = False if random.random() < self.mixup_prob: mixup = True image, target = self.load_mixup(image, target) # Copy-paste (use Yolox-Mixup to approximate copy-paste) if not mixup and random.random() < self.copy_paste: image, target = self.load_mixup(image, target, yolox_style=True) # augment image, target, deltas = self.transform(image, target, mosaic) return image, target, deltas def pull_image(self, index): # get the image file name image_dict = self.coco.dataset['images'][index] image_id = image_dict["id"] filename = image_dict["file_name"] # load the image image_path = os.path.join(self.data_dir, "images", filename) image = cv2.imread(image_path) assert image is not None return image, image_id def pull_anno(self, index): img_id = self.ids[index] # image infor im_ann = self.coco.loadImgs(img_id)[0] width = im_ann['width'] height = im_ann['height'] # annotation infor anno_ids = self.coco.getAnnIds(imgIds=[int(img_id)], iscrowd=None) annotations = self.coco.loadAnns(anno_ids) #load a target bboxes = [] labels = [] for anno in annotations: if 'bbox' in anno and anno['area'] > 0: # bbox x1 = np.max((0, anno['bbox'][0])) y1 = np.max((0, anno['bbox'][1])) x2 = np.min((width - 1, x1 + np.max((0, anno['bbox'][2] - 1)))) y2 = np.min((height - 1, y1 + np.max((0, anno['bbox'][3] - 1)))) if x2 < x1 or y2 < y1: continue # class label cls_id = self.class_ids.index(anno['category_id']) bboxes.append([x1, y1, x2, y2]) labels.append(cls_id) # guard against no boxes via resizing bboxes = np.array(bboxes).reshape(-1, 4) labels = np.array(labels).reshape(-1) return bboxes, labels if __name__ == "__main__": import time import argparse from build import build_transform parser = argparse.ArgumentParser(description='COCO-Dataset') # opt parser.add_argument('--root', default="D:/python_work/dataset/VOCdevkit/", help='data root') parser.add_argument('--is_train', action="store_true", default=False, help='mixup augmentation.') parser.add_argument('--aug_type', default="yolo", type=str, choices=["yolo", "ssd"], help='yolo, ssd.') args = parser.parse_args() class YoloBaseConfig(object): def __init__(self) -> None: self.max_stride = 32 # ---------------- Data process config ---------------- self.box_format = 'xywh' self.normalize_coords = False self.mosaic_prob = 1.0 self.mixup_prob = 0.15 self.copy_paste = 0.3 ## Pixel mean & std self.pixel_mean = [0., 0., 0.] self.pixel_std = [255., 255., 255.] ## Transforms self.train_img_size = 640 self.test_img_size = 640 self.use_ablu = True self.aug_type = 'yolo' self.affine_params = { 'degrees': 0.0, 'translate': 0.2, 'scale': [0.1, 2.0], 'shear': 0.0, 'perspective': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, } class SSDBaseConfig(object): def __init__(self) -> None: self.max_stride = 32 # ---------------- Data process config ---------------- self.box_format = 'xywh' self.normalize_coords = False self.mosaic_prob = 0.0 self.mixup_prob = 0.0 self.copy_paste = 0.0 ## Pixel mean & std self.pixel_mean = [0., 0., 0.] self.pixel_std = [255., 255., 255.] ## Transforms self.train_img_size = 640 self.test_img_size = 640 self.aug_type = 'ssd' if args.aug_type == "yolo": cfg = YoloBaseConfig() elif args.aug_type == "ssd": cfg = SSDBaseConfig() transform = build_transform(cfg, args.is_train) dataset = VOCDataset(cfg, args.root, transform, args.is_train) np.random.seed(0) class_colors = [(np.random.randint(255), np.random.randint(255), np.random.randint(255)) for _ in range(80)] print('Data length: ', len(dataset)) for i in range(1000): t0 = time.time() image, target, deltas = dataset.pull_item(i) print("Load data: {} s".format(time.time() - t0)) # to numpy image = image.permute(1, 2, 0).numpy() # denormalize image = image * cfg.pixel_std + cfg.pixel_mean # rgb -> bgr if transform.color_format == 'rgb': image = image[..., (2, 1, 0)] # to uint8 image = image.astype(np.uint8) image = image.copy() img_h, img_w = image.shape[:2] boxes = target["boxes"] labels = target["labels"] for box, label in zip(boxes, labels): if cfg.box_format == 'xyxy': x1, y1, x2, y2 = box elif cfg.box_format == 'xywh': cx, cy, bw, bh = box x1 = cx - 0.5 * bw y1 = cy - 0.5 * bh x2 = cx + 0.5 * bw y2 = cy + 0.5 * bh if cfg.normalize_coords: x1 *= img_w y1 *= img_h x2 *= img_w y2 *= img_h cls_id = int(label) color = class_colors[cls_id] # class name label = voc_class_labels[cls_id] image = cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) # put the test on the bbox cv2.putText(image, label, (int(x1), int(y1 - 5)), 0, 0.5, color, 1, lineType=cv2.LINE_AA) cv2.imshow('gt', image) # cv2.imwrite(str(i)+'.jpg', img) cv2.waitKey(0)