import torch import torch.nn as nn try: from .modules import ConvModule, CSPBlock except: from modules import ConvModule, CSPBlock # IN1K pretrained weight pretrained_urls = { 'n': None, 's': None, 'm': None, 'l': None, 'x': None, } # --------------------- Yolov3's Backbone ----------------------- ## Modified DarkNet class Yolov4Backbone(nn.Module): def __init__(self, cfg): super(Yolov4Backbone, self).__init__() # ------------------ Basic setting ------------------ self.model_scale = cfg.model_scale self.feat_dims = [round(64 * cfg.width), round(128 * cfg.width), round(256 * cfg.width), round(512 * cfg.width), round(1024 * cfg.width)] # ------------------ Network setting ------------------ ## P1/2 self.layer_1 = ConvModule(3, self.feat_dims[0], kernel_size=6, padding=2, stride=2) # P2/4 self.layer_2 = nn.Sequential( ConvModule(self.feat_dims[0], self.feat_dims[1], kernel_size=3, padding=1, stride=2), CSPBlock(in_dim = self.feat_dims[1], out_dim = self.feat_dims[1], num_blocks = round(3*cfg.depth), expansion = 0.5, shortcut = True, ) ) # P3/8 self.layer_3 = nn.Sequential( ConvModule(self.feat_dims[1], self.feat_dims[2], kernel_size=3, padding=1, stride=2), CSPBlock(in_dim = self.feat_dims[2], out_dim = self.feat_dims[2], num_blocks = round(9*cfg.depth), expansion = 0.5, shortcut = True, ) ) # P4/16 self.layer_4 = nn.Sequential( ConvModule(self.feat_dims[2], self.feat_dims[3], kernel_size=3, padding=1, stride=2), CSPBlock(in_dim = self.feat_dims[3], out_dim = self.feat_dims[3], num_blocks = round(9*cfg.depth), expansion = 0.5, shortcut = True, ) ) # P5/32 self.layer_5 = nn.Sequential( ConvModule(self.feat_dims[3], self.feat_dims[4], kernel_size=3, padding=1, stride=2), CSPBlock(in_dim = self.feat_dims[4], out_dim = self.feat_dims[4], num_blocks = round(3*cfg.depth), expansion = 0.5, shortcut = True, ) ) # Initialize all layers self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): m.reset_parameters() def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs if __name__ == '__main__': import time from thop import profile class BaseConfig(object): def __init__(self) -> None: self.width = 0.5 self.depth = 0.34 self.model_scale = "s" self.use_pretrained = True cfg = BaseConfig() model = Yolov4Backbone(cfg) x = torch.randn(1, 3, 640, 640) t0 = time.time() outputs = model(x) print(model) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) x = torch.randn(1, 3, 640, 640) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))