# Redesigned YOLOv2: - VOC | Model | Backbone | Batch | Scale | APval
0.5 | Weight | Logs | |--------|------------|-------|-------|-------------------|--------|--------| | YOLOv2 | ResNet-18 | 1xb16 | 640 | 75.7 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolov2_r18_voc.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOv2-R18-VOC.txt) | - COCO | Model | Backbone | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | Logs | |--------|------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|------| | YOLOv2 | ResNet-18 | 1xb16 | 640 | 28.4 | 47.4 | 38.0 | 21.5 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolov2_r18_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOv2-R18-COCO.txt) | - For training, we train redesigned YOLOv2 with 150 epochs on COCO. - For data augmentation, we use the SSD's augmentation, including the RandomCrop, RandomDistort, RandomExpand, RandomHFlip and so on. - For optimizer, we use AdamW with weight decay of 0.05 and per image base lr of 0.001 / 64. - For learning rate scheduler, we use cosine decay scheduler. - For batch size, we set it to 16, and we also use the gradient accumulation to approximate batch size of 256. ## Train YOLOv2 ### Single GPU Taking training YOLOv2-R18 on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m yolov2_r18 -bs 16 --fp16 ``` ### Multi GPU Taking training YOLOv2-R18 on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m yolov2_r18 -bs 16 --fp16 ``` ## Test YOLOv2 Taking testing YOLOv2-R18 on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m yolov2_r18 --weight path/to/yolov2.pth --show ``` ## Evaluate YOLOv2 Taking evaluating YOLOv2-R18 on COCO-val as the example, ```Shell python eval.py --cuda -d coco --root path/to/coco -m yolov2_r18 --weight path/to/yolov2.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov2_r18 --weight path/to/weight --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov2_r18 --weight path/to/weight --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m yolov2_r18 --weight path/to/weight --show --gif ```