import torch import torch.nn as nn try: from .yolov6_basic import RepBlock, RepVGGBlock, RepCSPBlock except: from yolov6_basic import RepBlock, RepVGGBlock, RepCSPBlock # IN1K pretrained weight pretrained_urls = { 'n': None, 's': None, 'm': None, 'l': None, } # --------------------- Yolov3's Backbone ----------------------- ## Modified DarkNet class Yolov6Backbone(nn.Module): def __init__(self, cfg): super(Yolov6Backbone, self).__init__() # ------------------ Basic setting ------------------ self.cfg = cfg self.model_scale = cfg.scale self.feat_dims = [round(64 * cfg.width), round(128 * cfg.width), round(256 * cfg.width), round(512 * cfg.width), round(1024 * cfg.width)] # ------------------ Network setting ------------------ ## P1/2 self.layer_1 = RepVGGBlock(3, self.feat_dims[0], kernel_size=3, padding=1, stride=2) # P2/4 self.layer_2 = self.make_block(self.feat_dims[0], self.feat_dims[1], round(6*cfg.depth)) # P3/8 self.layer_3 = self.make_block(self.feat_dims[1], self.feat_dims[2], round(12*cfg.depth)) # P4/16 self.layer_4 = self.make_block(self.feat_dims[2], self.feat_dims[3], round(18*cfg.depth)) # P5/32 self.layer_5 = self.make_block(self.feat_dims[3], self.feat_dims[4], round(6*cfg.depth)) # Initialize all layers self.init_weights() # Load imagenet pretrained weight if cfg.use_pretrained: self.load_pretrained() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def load_pretrained(self): url = pretrained_urls[self.model_scale] if url is not None: print('Loading backbone pretrained weight from : {}'.format(url)) # checkpoint state dict checkpoint = torch.hub.load_state_dict_from_url( url=url, map_location="cpu", check_hash=True) checkpoint_state_dict = checkpoint.pop("model") # model state dict model_state_dict = self.state_dict() # check for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: checkpoint_state_dict.pop(k) else: checkpoint_state_dict.pop(k) print('Unused key: ', k) # load the weight self.load_state_dict(checkpoint_state_dict) else: print('No pretrained weight for model scale: {}.'.format(self.model_scale)) def make_block(self, in_dim, out_dim, num_blocks=1): if self.model_scale in ["n", "s"]: block = nn.Sequential( RepVGGBlock(in_dim, out_dim, kernel_size=3, padding=1, stride=2), RepBlock(in_channels = out_dim, out_channels = out_dim, num_blocks = num_blocks, block = RepVGGBlock) ) elif self.model_scale in ["m", "l"]: block = nn.Sequential( RepVGGBlock(in_dim, out_dim, kernel_size=3, padding=1, stride=2), RepCSPBlock(in_channels = out_dim, out_channels = out_dim, num_blocks = num_blocks, expansion = self.cfg.bk_csp_expansion) ) else: raise NotImplementedError("Unknown model scale: {}".format(self.model_scale)) return block def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs if __name__ == '__main__': import time from thop import profile class BaseConfig(object): def __init__(self) -> None: self.bk_depthwise = False self.width = 0.50 self.depth = 0.34 self.scale = "s" self.use_pretrained = True cfg = BaseConfig() model = Yolov6Backbone(cfg) x = torch.randn(1, 3, 640, 640) t0 = time.time() outputs = model(x) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) for m in model.modules(): if hasattr(m, "switch_to_deploy"): m.switch_to_deploy() x = torch.randn(1, 3, 640, 640) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))