import torch import torch.nn as nn import torch.nn.functional as F from scipy.optimize import linear_sum_assignment from .loss_utils import box_cxcywh_to_xyxy, generalized_box_iou class HungarianMatcher(nn.Module): def __init__(self, cost_class=2.0, cost_bbox=5.0, cost_giou=2.0, alpha=0.25, gamma=2.0): super().__init__() self.cost_class = cost_class self.cost_bbox = cost_bbox self.cost_giou = cost_giou self.alpha = alpha self.gamma = gamma assert self.cost_class != 0 or self.cost_bbox != 0 or self.cost_giou != 0, "all costs cant be 0" @torch.no_grad() def forward(self, outputs, targets): bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = F.sigmoid(outputs["pred_logits"].flatten(0, 1)) out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) tgt_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost out_prob = out_prob[:, tgt_ids] neg_cost_class = (1 - self.alpha) * (out_prob**self.gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = self.alpha * ((1 - out_prob)**self.gamma) * (-(out_prob + 1e-8).log()) cost_class = pos_cost_class - neg_cost_class # Compute the L1 cost between boxes cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1) # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox)) # Final cost matrix C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou C = C.view(bs, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]