# Real-time Transformer-based Object Detector: ## Results on the COCO-val | Model | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | ckpt | Logs | |--------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|------| | RT-DETR-R18 | 4xb4 | 640 | 45.5 | 63.5 | 66.8 | 21.0 | [ckpt](https://github.com/yjh0410/ODLab-World/releases/download/coco_weight/rtdetr_r18_coco.pth) | [log](https://github.com/yjh0410/ODLab-World/releases/download/coco_weight/RT-DETR-R18-COCO.txt)| | RT-DETR-R50 | 4xb4 | 640 | 50.6 | 69.4 | 112.1 | 36.7 | [ckpt](https://github.com/yjh0410/ODLab-World/releases/download/coco_weight/rtdetr_r50_coco.pth) | [log](https://github.com/yjh0410/ODLab-World/releases/download/coco_weight/RT-DETR-R50-COCO.txt)| ## Train RT-DETR ### Single GPU Taking training RT-DETR-S on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m rtdetr_r18 -bs 16 --fp16 ``` ### Multi GPU Taking training RT-DETR on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root /data/datasets/ -m rtdetr_r18 -bs 16 --fp16 --sybn ``` ## Test RT-DETR Taking testing RT-DETR on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m rtdetr_r18 --weight path/to/rtdetr_r18.pth --show ``` ## Evaluate RT-DETR Taking evaluating RT-DETR on COCO-val as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m rtdetr_r18 -bs 16 --fp16 --resume path/to/rtdetr_r18.pth --eval_first ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m rtdetr_r18 --weight path/to/weight --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m rtdetr_r18 --weight path/to/weight --show ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m rtdetr_r18 --weight path/to/weight --show ```