from typing import List import torch import torch.nn as nn import torch.nn.functional as F try: from .yolov3_basic import BasicConv, ResBlock except: from yolov3_basic import BasicConv, ResBlock # Yolov3FPN class Yolov3FPN(nn.Module): def __init__(self, cfg, in_dims: List = [256, 512, 1024], ): super(Yolov3FPN, self).__init__() self.in_dims = in_dims c3, c4, c5 = in_dims # ---------------------- Yolov3's Top down FPN ---------------------- ## P5 -> P4 self.top_down_layer_1 = ResBlock(in_dim = c5, out_dim = round(512*cfg.width), num_blocks = round(3*cfg.depth), expansion = 0.5, shortcut = False, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise) self.reduce_layer_1 = BasicConv(round(512*cfg.width), round(256*cfg.width), kernel_size=1, padding=0, stride=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) ## P4 -> P3 self.top_down_layer_2 = ResBlock(in_dim = c4 + round(256*cfg.width), out_dim = round(256*cfg.width), num_blocks = round(3*cfg.depth), expansion = 0.5, shortcut = False, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise) self.reduce_layer_2 = BasicConv(round(256*cfg.width), round(128*cfg.width), kernel_size=1, padding=0, stride=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) ## P3 self.top_down_layer_3 = ResBlock(in_dim = c3 + round(128*cfg.width), out_dim = round(128*cfg.width), num_blocks = round(3*cfg.depth), expansion = 0.5, shortcut = False, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise) # ---------------------- Yolov3's output projection ---------------------- self.out_layers = nn.ModuleList([ BasicConv(in_dim, round(cfg.head_dim*cfg.width), kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) for in_dim in [round(128*cfg.width), round(256*cfg.width), round(512*cfg.width)] ]) self.out_dims = [round(cfg.head_dim*cfg.width)] * 3 # Initialize all layers self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, features): c3, c4, c5 = features # p5/32 p5 = self.top_down_layer_1(c5) # p4/16 p5_up = F.interpolate(self.reduce_layer_1(p5), scale_factor=2.0) p4 = self.top_down_layer_2(torch.cat([c4, p5_up], dim=1)) # P3/8 p4_up = F.interpolate(self.reduce_layer_2(p4), scale_factor=2.0) p3 = self.top_down_layer_3(torch.cat([c3, p4_up], dim=1)) out_feats = [p3, p4, p5] # output proj layers out_feats_proj = [] for feat, layer in zip(out_feats, self.out_layers): out_feats_proj.append(layer(feat)) return out_feats_proj if __name__=='__main__': import time from thop import profile # Model config # YOLOv2-Base config class Yolov3BaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.width = 0.50 self.depth = 0.34 self.out_stride = [8, 16, 32] self.max_stride = 32 self.num_levels = 3 ## FPN self.fpn_act = 'silu' self.fpn_norm = 'BN' self.fpn_depthwise = False ## Head self.head_dim = 256 cfg = Yolov3BaseConfig() # Build a head in_dims = [128, 256, 512] fpn = Yolov3FPN(cfg, in_dims) # Inference x = [torch.randn(1, in_dims[0], 80, 80), torch.randn(1, in_dims[1], 40, 40), torch.randn(1, in_dims[2], 20, 20)] t0 = time.time() output = fpn(x) t1 = time.time() print('Time: ', t1 - t0) print('====== FPN output ====== ') for level, feat in enumerate(output): print("- Level-{} : ".format(level), feat.shape) flops, params = profile(fpn, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))