import math import torch import torch.nn as nn import torch.nn.functional as F # Single-level pred layer class SingleLevelPredLayer(nn.Module): def __init__(self, cls_dim :int = 256, reg_dim :int = 256, stride :int = 32, reg_max :int = 16, num_classes :int = 80, num_coords :int = 4): super().__init__() # --------- Basic Parameters ---------- self.stride = stride self.cls_dim = cls_dim self.reg_dim = reg_dim self.reg_max = reg_max self.num_classes = num_classes self.num_coords = num_coords # --------- Network Parameters ---------- self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1) self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1, groups=4) self.init_bias() def init_bias(self): # cls pred bias b = self.cls_pred.bias.view(1, -1) b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2)) self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # reg pred bias b = self.reg_pred.bias.view(-1, ) b.data.fill_(1.0) self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) w = self.reg_pred.weight w.data.fill_(0.) self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True) def generate_anchors(self, fmp_size): """ fmp_size: (List) [H, W] """ # generate grid cells fmp_h, fmp_w = fmp_size anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)]) # [H, W, 2] -> [HW, 2] anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) anchors += 0.5 # add center offset anchors *= self.stride return anchors def forward(self, cls_feat, reg_feat): # pred cls_pred = self.cls_pred(cls_feat) reg_pred = self.reg_pred(reg_feat) # generate anchor boxes: [M, 4] B, _, H, W = cls_pred.size() fmp_size = [H, W] anchors = self.generate_anchors(fmp_size) anchors = anchors.to(cls_pred.device) # stride tensor: [M, 1] stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride # [B, C, H, W] -> [B, H, W, C] -> [B, M, C] cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes) reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max) # output dict outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C] "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)] "anchors": anchors, # List(Tensor) [M, 2] "strides": self.stride, # List(Int) = [8, 16, 32] "stride_tensor": stride_tensor # List(Tensor) [M, 1] } return outputs # Multi-level pred layer class GElanPredLayer(nn.Module): def __init__(self, cfg, cls_dim, reg_dim, ): super().__init__() # --------- Basic Parameters ---------- self.cfg = cfg self.cls_dim = cls_dim self.reg_dim = reg_dim # ----------- Network Parameters ----------- ## pred layers self.multi_level_preds = nn.ModuleList( [SingleLevelPredLayer(cls_dim = cls_dim, reg_dim = reg_dim, stride = cfg.out_stride[level], reg_max = cfg.reg_max, num_classes = cfg.num_classes, num_coords = 4 * cfg.reg_max) for level in range(cfg.num_levels) ]) ## proj conv proj_init = torch.arange(cfg.reg_max, dtype=torch.float) self.proj_conv = nn.Conv2d(cfg.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False) self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, cfg.reg_max, 1, 1]), requires_grad=False) def forward(self, cls_feats, reg_feats): all_anchors = [] all_strides = [] all_cls_preds = [] all_reg_preds = [] all_box_preds = [] for level in range(self.cfg.num_levels): # -------------- Single-level prediction -------------- outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level]) # -------------- Decode bbox -------------- B, M = outputs["pred_reg"].shape[:2] # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.cfg.reg_max]) # [B, M, 4, reg_max] -> [B, reg_max, 4, M] delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous() # [B, reg_max, 4, M] -> [B, 1, 4, M] delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1)) # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4] delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous() ## tlbr -> xyxy x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.cfg.out_stride[level] x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.cfg.out_stride[level] box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1) # collect results all_cls_preds.append(outputs["pred_cls"]) all_reg_preds.append(outputs["pred_reg"]) all_box_preds.append(box_pred) all_anchors.append(outputs["anchors"]) all_strides.append(outputs["stride_tensor"]) # output dict outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C] "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)] "pred_box": all_box_preds, # List(Tensor) [B, M, 4] "anchors": all_anchors, # List(Tensor) [M, 2] "stride_tensor": all_strides, # List(Tensor) [M, 1] "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32] } return outputs