# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Utilities for bounding box manipulation and GIoU. """ import torch from torchvision.ops.boxes import box_area def get_ious(bboxes1, bboxes2, box_mode="xyxy", iou_type="iou"): """ Compute iou loss of type ['iou', 'giou', 'linear_iou'] Args: inputs (tensor): pred values targets (tensor): target values weight (tensor): loss weight box_mode (str): 'xyxy' or 'ltrb', 'ltrb' is currently supported. loss_type (str): 'giou' or 'iou' or 'linear_iou' reduction (str): reduction manner Returns: loss (tensor): computed iou loss. """ if box_mode == "ltrb": bboxes1 = torch.cat((-bboxes1[..., :2], bboxes1[..., 2:]), dim=-1) bboxes2 = torch.cat((-bboxes2[..., :2], bboxes2[..., 2:]), dim=-1) elif box_mode != "xyxy": raise NotImplementedError eps = torch.finfo(torch.float32).eps bboxes1_area = (bboxes1[..., 2] - bboxes1[..., 0]).clamp_(min=0) \ * (bboxes1[..., 3] - bboxes1[..., 1]).clamp_(min=0) bboxes2_area = (bboxes2[..., 2] - bboxes2[..., 0]).clamp_(min=0) \ * (bboxes2[..., 3] - bboxes2[..., 1]).clamp_(min=0) w_intersect = (torch.min(bboxes1[..., 2], bboxes2[..., 2]) - torch.max(bboxes1[..., 0], bboxes2[..., 0])).clamp_(min=0) h_intersect = (torch.min(bboxes1[..., 3], bboxes2[..., 3]) - torch.max(bboxes1[..., 1], bboxes2[..., 1])).clamp_(min=0) area_intersect = w_intersect * h_intersect area_union = bboxes2_area + bboxes1_area - area_intersect ious = area_intersect / area_union.clamp(min=eps) if iou_type == "iou": return ious elif iou_type == "giou": g_w_intersect = torch.max(bboxes1[..., 2], bboxes2[..., 2]) \ - torch.min(bboxes1[..., 0], bboxes2[..., 0]) g_h_intersect = torch.max(bboxes1[..., 3], bboxes2[..., 3]) \ - torch.min(bboxes1[..., 1], bboxes2[..., 1]) ac_uion = g_w_intersect * g_h_intersect gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps) return gious else: raise NotImplementedError def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) # modified from torchvision to also return the union def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter union[union == 0.0] = 1.0 iou = inter / union return iou, union def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 2:] >= boxes1[:, :2]).all() assert (boxes2[:, 2:] >= boxes2[:, :2]).all() iou, union = box_iou(boxes1, boxes2) lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,M,2] area = wh[:, :, 0] * wh[:, :, 1] return iou - (area - union) / area