import torch import torch.nn as nn # --------------- Model components --------------- from ...backbone import build_backbone from ...neck import build_neck from ...head import build_head # --------------- External components --------------- from utils.misc import multiclass_nms # ------------------------ Fully Convolutional One-Stage Detector ------------------------ class FCOS(nn.Module): def __init__(self, cfg, num_classes :int = 80, conf_thresh :float = 0.05, nms_thresh :float = 0.6, topk :int = 1000, ca_nms :bool = False): super(FCOS, self).__init__() # ---------------------- Basic Parameters ---------------------- self.cfg = cfg self.topk = topk self.num_classes = num_classes self.conf_thresh = conf_thresh self.nms_thresh = nms_thresh self.ca_nms = ca_nms # ---------------------- Network Parameters ---------------------- ## Backbone self.backbone, feat_dims = build_backbone(cfg) ## Neck self.fpn = build_neck(cfg, feat_dims, cfg['head_dim']) ## Heads self.head = build_head(cfg, cfg['head_dim'], cfg['head_dim'], num_classes) def post_process(self, cls_preds, ctn_preds, box_preds): """ Input: cls_preds: List(Tensor) [[B, H x W, C], ...] ctn_preds: List(Tensor) [[B, H x W, 1], ...] box_preds: List(Tensor) [[B, H x W, 4], ...] """ all_scores = [] all_labels = [] all_bboxes = [] for cls_pred_i, ctn_pred_i, box_pred_i in zip(cls_preds, ctn_preds, box_preds): cls_pred_i = cls_pred_i[0] ctn_pred_i = ctn_pred_i[0] box_pred_i = box_pred_i[0] # (H x W x C,) scores_i = torch.sqrt(cls_pred_i.sigmoid() * ctn_pred_i.sigmoid()).flatten() # Keep top k top scoring indices only. num_topk = min(self.topk, box_pred_i.size(0)) # torch.sort is actually faster than .topk (at least on GPUs) predicted_prob, topk_idxs = scores_i.sort(descending=True) topk_scores = predicted_prob[:num_topk] topk_idxs = topk_idxs[:num_topk] # filter out the proposals with low confidence score keep_idxs = topk_scores > self.conf_thresh topk_idxs = topk_idxs[keep_idxs] # final scores scores = topk_scores[keep_idxs] # final labels labels = topk_idxs % self.num_classes # final bboxes anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor') bboxes = box_pred_i[anchor_idxs] all_scores.append(scores) all_labels.append(labels) all_bboxes.append(bboxes) scores = torch.cat(all_scores) labels = torch.cat(all_labels) bboxes = torch.cat(all_bboxes) # to cpu & numpy scores = scores.cpu().numpy() labels = labels.cpu().numpy() bboxes = bboxes.cpu().numpy() # nms scores, labels, bboxes = multiclass_nms( scores, labels, bboxes, self.nms_thresh, self.num_classes, self.ca_nms) return bboxes, scores, labels def forward(self, src, src_mask=None): # ---------------- Backbone ---------------- pyramid_feats = self.backbone(src) # ---------------- Neck ---------------- pyramid_feats = self.fpn(pyramid_feats) # ---------------- Heads ---------------- outputs = self.head(pyramid_feats, src_mask) if not self.training: # ---------------- PostProcess ---------------- cls_pred = outputs["pred_cls"] ctn_pred = outputs["pred_ctn"] box_pred = outputs["pred_box"] bboxes, scores, labels = self.post_process(cls_pred, ctn_pred, box_pred) # normalize bbox bboxes[..., 0::2] /= src.shape[-1] bboxes[..., 1::2] /= src.shape[-2] bboxes = bboxes.clip(0., 1.) return bboxes, scores, labels return outputs