import torch import torch.nn as nn try: from .yolov5_basic import BasicConv, CSPBlock except: from yolov5_basic import BasicConv, CSPBlock # IN1K pretrained weight pretrained_urls = { 'n': None, 's': "https://github.com/yjh0410/ICLab/releases/download/in1k_pretrained/cspdarknet_s_in1k_70.1.pth", 'm': "https://github.com/yjh0410/ICLab/releases/download/in1k_pretrained/cspdarknet_m_in1k_75.2.pth", 'l': None, 'x': None, } # --------------------- Yolov3's Backbone ----------------------- ## Modified DarkNet class Yolov5Backbone(nn.Module): def __init__(self, cfg): super(Yolov5Backbone, self).__init__() # ------------------ Basic setting ------------------ self.model_scale = cfg.scale self.feat_dims = [round(64 * cfg.width), round(128 * cfg.width), round(256 * cfg.width), round(512 * cfg.width), round(1024 * cfg.width)] # ------------------ Network setting ------------------ ## P1/2 self.layer_1 = BasicConv(3, self.feat_dims[0], kernel_size=6, padding=2, stride=2, act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise) # P2/4 self.layer_2 = nn.Sequential( BasicConv(self.feat_dims[0], self.feat_dims[1], kernel_size=3, padding=1, stride=2, act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise), CSPBlock(in_dim = self.feat_dims[1], out_dim = self.feat_dims[1], num_blocks = round(3*cfg.depth), expansion = 0.5, shortcut = True, act_type = cfg.bk_act, norm_type = cfg.bk_norm, depthwise = cfg.bk_depthwise) ) # P3/8 self.layer_3 = nn.Sequential( BasicConv(self.feat_dims[1], self.feat_dims[2], kernel_size=3, padding=1, stride=2, act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise), CSPBlock(in_dim = self.feat_dims[2], out_dim = self.feat_dims[2], num_blocks = round(9*cfg.depth), expansion = 0.5, shortcut = True, act_type = cfg.bk_act, norm_type = cfg.bk_norm, depthwise = cfg.bk_depthwise) ) # P4/16 self.layer_4 = nn.Sequential( BasicConv(self.feat_dims[2], self.feat_dims[3], kernel_size=3, padding=1, stride=2, act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise), CSPBlock(in_dim = self.feat_dims[3], out_dim = self.feat_dims[3], num_blocks = round(9*cfg.depth), expansion = 0.5, shortcut = True, act_type = cfg.bk_act, norm_type = cfg.bk_norm, depthwise = cfg.bk_depthwise) ) # P5/32 self.layer_5 = nn.Sequential( BasicConv(self.feat_dims[3], self.feat_dims[4], kernel_size=3, padding=1, stride=2, act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise), CSPBlock(in_dim = self.feat_dims[4], out_dim = self.feat_dims[4], num_blocks = round(3*cfg.depth), expansion = 0.5, shortcut = True, act_type = cfg.bk_act, norm_type = cfg.bk_norm, depthwise = cfg.bk_depthwise) ) # Initialize all layers self.init_weights() # Load imagenet pretrained weight if cfg.use_pretrained: self.load_pretrained() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def load_pretrained(self): url = pretrained_urls[self.model_scale] if url is not None: print('Loading backbone pretrained weight from : {}'.format(url)) # checkpoint state dict checkpoint = torch.hub.load_state_dict_from_url( url=url, map_location="cpu", check_hash=True) checkpoint_state_dict = checkpoint.pop("model") # model state dict model_state_dict = self.state_dict() # check for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: checkpoint_state_dict.pop(k) else: checkpoint_state_dict.pop(k) print('Unused key: ', k) # load the weight self.load_state_dict(checkpoint_state_dict) else: print('No pretrained weight for model scale: {}.'.format(self.model_scale)) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs if __name__ == '__main__': import time from thop import profile class BaseConfig(object): def __init__(self) -> None: self.bk_act = 'silu' self.bk_norm = 'BN' self.bk_depthwise = False self.width = 0.5 self.depth = 0.34 self.scale = "s" self.use_pretrained = True cfg = BaseConfig() model = Yolov5Backbone(cfg) x = torch.randn(1, 3, 640, 640) t0 = time.time() outputs = model(x) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) x = torch.randn(1, 3, 640, 640) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))