import math import torch # ------------------------- WarmUp LR Scheduler ------------------------- ## Warmup LR Scheduler class LinearWarmUpLrScheduler(object): def __init__(self, base_lr=0.01, wp_iter=500): self.base_lr = base_lr self.wp_iter = wp_iter self.warmup_factor = 0.00066667 def set_lr(self, optimizer, cur_lr): for param_group in optimizer.param_groups: init_lr = param_group['initial_lr'] ratio = init_lr / self.base_lr param_group['lr'] = cur_lr * ratio def __call__(self, iter, optimizer): # warmup assert iter < self.wp_iter alpha = iter / self.wp_iter warmup_factor = self.warmup_factor * (1 - alpha) + alpha tmp_lr = self.base_lr * warmup_factor self.set_lr(optimizer, tmp_lr) # ------------------------- LR Scheduler ------------------------- def build_lr_scheduler(cfg, optimizer, resume=None): print('==============================') print('LR Scheduler: {}'.format(cfg.lr_scheduler)) if cfg.lr_scheduler == "step": lr_step = [cfg.max_epoch // 3, cfg.max_epoch // 3 * 2] lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=lr_step, gamma=0.1) elif cfg.lr_scheduler == "cosine": lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg.max_epoch - cfg.warmup_epoch - 1, eta_min=cfg.min_lr) else: raise NotImplementedError("Unknown lr scheduler: {}".format(cfg.lr_scheduler)) if resume is not None and resume.lower() != "none": checkpoint = torch.load(resume) if 'lr_scheduler' in checkpoint.keys(): print('--Load lr scheduler from the checkpoint: ', resume) # checkpoint state dict checkpoint_state_dict = checkpoint.pop("lr_scheduler") lr_scheduler.load_state_dict(checkpoint_state_dict) return lr_scheduler