# RetinaNet Our `RetinaNet-R50-1x` baseline on COCO-val: ```Shell ``` - ImageNet-1K_V1 pretrained | Model | scale | FPS | APval
0.5:0.95 | APval
0.5 | Weight | Logs | | ------------------| ---------- | ----- | ---------------------- | --------------- | ------ | ----- | | RetinaNet_R18_1x | 800,1333 | | 30.5 | 48.1 | [ckpt](https://github.com/yjh0410/ODLab/releases/download/detection_weights/retinanet_r18_1x_coco.pth) | [log](https://github.com/yjh0410/ODLab/releases/download/detection_weights/RetinaNet-R18-1x.txt) | | RetinaNet_R50_1x | 800,1333 | | | | | | ## Train RetinaNet ### Single GPU Taking training **RetinaNet_R18_1x** on COCO as the example, ```Shell python main.py --cuda -d coco --root path/to/coco -m retinanet_r18_1x --batch_size 16 --eval_epoch 2 ``` ### Multi GPU Taking training **RetinaNet_R18_1x** on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root path/to/coco -m retinanet_r18_1x --batch_size 16 --eval_epoch 2 ``` ## Test RetinaNet Taking testing **RetinaNet_R18_1x** on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m retinanet_r18_1x --weight path/to/retinanet_r18_1x.pth -vt 0.4 --show ``` ## Evaluate RetinaNet Taking evaluating **RetinaNet_R18_1x** on COCO-val as the example, ```Shell python main.py --cuda -d coco --root path/to/coco -m retinanet_r18_1x --resume path/to/retinanet_r18_1x.pth --eval_first ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m retinanet_r18_1x --weight path/to/weight -vt 0.4 --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m retinanet_r18_1x --weight path/to/weight -vt 0.4 --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m retinanet_r18_1x --weight path/to/weight -vt 0.4 --show --gif ```