from typing import List import torch import torch.nn as nn import torch.nn.functional as F try: from .yolov6_basic import BasicConv, RepBlock, RepCSPBlock except: from yolov6_basic import BasicConv, RepBlock, RepCSPBlock # Yolov6FPN class Yolov6PaFPN(nn.Module): def __init__(self, cfg, in_dims: List = [256, 512, 1024]): super(Yolov6PaFPN, self).__init__() self.in_dims = in_dims self.model_scale = cfg.scale c3, c4, c5 = in_dims # ---------------------- Yolov6's Top down FPN ---------------------- ## P5 -> P4 self.reduce_layer_1 = BasicConv(c5, round(256*cfg.width), kernel_size=1, padding=0, stride=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.top_down_layer_1 = self.make_block(in_dim = c4 + round(256*cfg.width), out_dim = round(256*cfg.width), num_blocks = round(12*cfg.depth)) ## P4 -> P3 self.reduce_layer_2 = BasicConv(round(256*cfg.width), round(128*cfg.width), kernel_size=1, padding=0, stride=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.top_down_layer_2 = self.make_block(in_dim = c3 + round(128*cfg.width), out_dim = round(128*cfg.width), num_blocks = round(12*cfg.depth)) # ---------------------- Yolov6's Bottom up PAN ---------------------- ## P3 -> P4 self.downsample_layer_1 = BasicConv(round(128*cfg.width), round(128*cfg.width), kernel_size=3, padding=1, stride=2, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) self.bottom_up_layer_1 = self.make_block(in_dim = round(128*cfg.width) + round(128*cfg.width), out_dim = round(256*cfg.width), num_blocks = round(12*cfg.depth)) ## P4 -> P5 self.downsample_layer_2 = BasicConv(round(256*cfg.width), round(256*cfg.width), kernel_size=3, padding=1, stride=2, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) self.bottom_up_layer_2 = self.make_block(in_dim = round(256*cfg.width) + round(256*cfg.width), out_dim = round(512*cfg.width), num_blocks = round(12*cfg.depth)) # ---------------------- Yolov6's output projection ---------------------- self.out_layers = nn.ModuleList([ BasicConv(in_dim, in_dim, kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) for in_dim in [round(128*cfg.width), round(256*cfg.width), round(512*cfg.width)] ]) self.out_dims = [round(128*cfg.width), round(256*cfg.width), round(512*cfg.width)] def make_block(self, in_dim, out_dim, num_blocks=1): if self.model_scale in ["n", "s"]: block = RepBlock(in_channels = in_dim, out_channels = out_dim, num_blocks = num_blocks) elif self.model_scale in ["m", "l"]: block = RepCSPBlock(in_channels = in_dim, out_channels = out_dim, num_blocks = num_blocks, expansion = 0.5) else: raise NotImplementedError("Unknown model scale: {}".format(self.model_scale)) return block def forward(self, features): c3, c4, c5 = features # ------------------ Top down FPN ------------------ ## P5 -> P4 p5 = self.reduce_layer_1(c5) p5_up = F.interpolate(p5, scale_factor=2.0) p4 = self.top_down_layer_1(torch.cat([c4, p5_up], dim=1)) ## P4 -> P3 p4 = self.reduce_layer_2(p4) p4_up = F.interpolate(p4, scale_factor=2.0) p3 = self.top_down_layer_2(torch.cat([c3, p4_up], dim=1)) # ------------------ Bottom up PAN ------------------ ## P3 -> P4 p3_ds = self.downsample_layer_1(p3) p4 = self.bottom_up_layer_1(torch.cat([p4, p3_ds], dim=1)) ## P4 -> P5 p4_ds = self.downsample_layer_2(p4) p5 = self.bottom_up_layer_2(torch.cat([p5, p4_ds], dim=1)) out_feats = [p3, p4, p5] # output proj layers out_feats_proj = [] for feat, layer in zip(out_feats, self.out_layers): out_feats_proj.append(layer(feat)) return out_feats_proj if __name__=='__main__': import time from thop import profile # Model config # YOLOv2-Base config class Yolov3BaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.width = 0.50 self.depth = 0.34 self.out_stride = [8, 16, 32] self.max_stride = 32 self.num_levels = 3 ## FPN self.fpn_act = 'silu' self.fpn_norm = 'BN' self.fpn_depthwise = False cfg = Yolov3BaseConfig() # Build a head in_dims = [128, 256, 512] fpn = Yolov6PaFPN(cfg, in_dims) # Inference x = [torch.randn(1, in_dims[0], 80, 80), torch.randn(1, in_dims[1], 40, 40), torch.randn(1, in_dims[2], 20, 20)] t0 = time.time() output = fpn(x) t1 = time.time() print('Time: ', t1 - t0) print('====== FPN output ====== ') for level, feat in enumerate(output): print("- Level-{} : ".format(level), feat.shape) flops, params = profile(fpn, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))