import torch import torch.nn as nn # --------------------- Basic modules --------------------- class ConvModule(nn.Module): def __init__(self, in_dim, # in channels out_dim, # out channels kernel_size=1, # kernel size padding=0, # padding stride=1, # padding dilation=1, # dilation ): super(ConvModule, self).__init__() self.conv = nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False) self.norm = nn.BatchNorm2d(out_dim) self.act = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): return self.act(self.norm(self.conv(x))) # --------------------- ResNet modules --------------------- def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = conv1x1(inplanes, planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes, stride) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = conv1x1(planes, planes * self.expansion) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out