import torch import torch.nn as nn import torch.nn.functional as F try: from .modules import ConvModule, ELANBlockFPN, DownSample except: from modules import ConvModule, ELANBlockFPN, DownSample # PaFPN-ELAN (YOLOv7's) class Yolov7PaFPN(nn.Module): def __init__(self, in_dims = [512, 1024, 512], head_dim = 256, ): super(Yolov7PaFPN, self).__init__() # ----------------------------- Basic parameters ----------------------------- self.in_dims = in_dims self.head_dim = head_dim self.fpn_out_dims = [head_dim] * 3 self.branch_width = 4 self.branch_depth = 1 c3, c4, c5 = self.in_dims # ----------------------------- Top-down FPN ----------------------------- ## P5 -> P4 self.reduce_layer_1 = ConvModule(c5, 256, kernel_size=1) self.reduce_layer_2 = ConvModule(c4, 256, kernel_size=1) self.top_down_layer_1 = ELANBlockFPN(in_dim = 256 + 256, out_dim = 256, expansion = 0.5, branch_width = self.branch_width, branch_depth = self.branch_depth, ) ## P4 -> P3 self.reduce_layer_3 = ConvModule(256, 128, kernel_size=1) self.reduce_layer_4 = ConvModule(c3, 128, kernel_size=1) self.top_down_layer_2 = ELANBlockFPN(in_dim = 128 + 128, out_dim = 128, expansion = 0.5, branch_width = self.branch_width, branch_depth = self.branch_depth, ) # ----------------------------- Bottom-up FPN ----------------------------- ## P3 -> P4 self.downsample_layer_1 = DownSample(128, 256) self.bottom_up_layer_1 = ELANBlockFPN(in_dim = 256 + 256, out_dim = 256, expansion = 0.5, branch_width = self.branch_width, branch_depth = self.branch_depth, ) ## P4 -> P5 self.downsample_layer_2 = DownSample(256, 512) self.bottom_up_layer_2 = ELANBlockFPN(in_dim = 512 + c5, out_dim = 512, expansion = 0.5, branch_width = self.branch_width, branch_depth = self.branch_depth, ) ## Head convs self.head_conv_1 = ConvModule(128, 256, kernel_size=3, stride=1) self.head_conv_2 = ConvModule(256, 512, kernel_size=3, stride=1) self.head_conv_3 = ConvModule(512, 1024, kernel_size=3, stride=1) ## Output projs self.out_layers = nn.ModuleList([ConvModule(in_dim, head_dim, kernel_size=1) for in_dim in [256, 512, 1024] ]) def forward(self, features): c3, c4, c5 = features # Top down ## P5 -> P4 c6 = self.reduce_layer_1(c5) c7 = F.interpolate(c6, scale_factor=2.0) c8 = torch.cat([c7, self.reduce_layer_2(c4)], dim=1) c9 = self.top_down_layer_1(c8) ## P4 -> P3 c10 = self.reduce_layer_3(c9) c11 = F.interpolate(c10, scale_factor=2.0) c12 = torch.cat([c11, self.reduce_layer_4(c3)], dim=1) c13 = self.top_down_layer_2(c12) # Bottom up ## p3 -> P4 c14 = self.downsample_layer_1(c13) c15 = torch.cat([c14, c9], dim=1) c16 = self.bottom_up_layer_1(c15) ## P4 -> P5 c17 = self.downsample_layer_2(c16) c18 = torch.cat([c17, c5], dim=1) c19 = self.bottom_up_layer_2(c18) c20 = self.head_conv_1(c13) c21 = self.head_conv_2(c16) c22 = self.head_conv_3(c19) out_feats = [c20, c21, c22] # [P3, P4, P5] # output proj layers out_feats_proj = [] for feat, layer in zip(out_feats, self.out_layers): out_feats_proj.append(layer(feat)) return out_feats_proj if __name__=='__main__': import time from thop import profile # Model config # Build a head in_dims = [128, 256, 512] fpn = Yolov7PaFPN(in_dims, head_dim=256) # Randomly generate a input data x = [torch.randn(1, in_dims[0], 80, 80), torch.randn(1, in_dims[1], 40, 40), torch.randn(1, in_dims[2], 20, 20)] # Inference t0 = time.time() output = fpn(x) t1 = time.time() print('Time: ', t1 - t0) print('====== FPN output ====== ') for level, feat in enumerate(output): print("- Level-{} : ".format(level), feat.shape) flops, params = profile(fpn, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))