import torch import torch.nn as nn from typing import List try: from .modules import ConvModule except: from modules import ConvModule # -------------------- Detection Head -------------------- class DetHead(nn.Module): def __init__(self, in_dim :int = 256, cls_head_dim :int = 256, reg_head_dim :int = 256, num_cls_head :int = 2, num_reg_head :int = 2, ): super().__init__() # --------- Basic Parameters ---------- self.in_dim = in_dim self.num_cls_head = num_cls_head self.num_reg_head = num_reg_head # --------- Network Parameters ---------- ## classification head cls_feats = [] self.cls_head_dim = cls_head_dim for i in range(num_cls_head): if i == 0: cls_feats.append(ConvModule(in_dim, in_dim, kernel_size=3, stride=1, groups=in_dim)) cls_feats.append(ConvModule(in_dim, self.cls_head_dim, kernel_size=1)) else: cls_feats.append(ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=3, stride=1, groups=self.cls_head_dim)) cls_feats.append(ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=3, stride=1)) ## bbox regression head reg_feats = [] self.reg_head_dim = reg_head_dim for i in range(num_reg_head): if i == 0: reg_feats.append(ConvModule(in_dim, self.reg_head_dim, kernel_size=3, stride=1)) else: reg_feats.append(ConvModule(self.reg_head_dim, self.reg_head_dim, kernel_size=3, stride=1)) self.cls_feats = nn.Sequential(*cls_feats) self.reg_feats = nn.Sequential(*reg_feats) self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): m.reset_parameters() def forward(self, x): """ in_feats: (Tensor) [B, C, H, W] """ cls_feats = self.cls_feats(x) reg_feats = self.reg_feats(x) return cls_feats, reg_feats ## Multi-level Detection Head class Yolov10DetHead(nn.Module): def __init__(self, cfg, in_dims: List = [256, 512, 1024]): super().__init__() self.num_levels = len(cfg.out_stride) ## ----------- Network Parameters ----------- self.multi_level_heads = nn.ModuleList( [DetHead(in_dim = in_dims[level], cls_head_dim = max(in_dims[0], min(cfg.num_classes, 128)), reg_head_dim = max(in_dims[0]//4, 16, 4*cfg.reg_max), num_cls_head = cfg.num_cls_head, num_reg_head = cfg.num_reg_head, ) for level in range(self.num_levels)]) # --------- Basic Parameters ---------- self.in_dims = in_dims self.cls_head_dim = self.multi_level_heads[0].cls_head_dim self.reg_head_dim = self.multi_level_heads[0].reg_head_dim def forward(self, feats): """ feats: List[(Tensor)] [[B, C, H, W], ...] """ cls_feats = [] reg_feats = [] for feat, head in zip(feats, self.multi_level_heads): # ---------------- Pred ---------------- cls_feat, reg_feat = head(feat) cls_feats.append(cls_feat) reg_feats.append(reg_feat) return cls_feats, reg_feats if __name__=='__main__': import time from thop import profile # YOLOv10-Base config class Yolov10BaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.width = 0.25 self.depth = 0.34 self.ratio = 2.0 self.reg_max = 16 self.out_stride = [8, 16, 32] self.max_stride = 32 self.num_levels = 3 ## Head self.num_cls_head = 2 self.num_reg_head = 2 cfg = Yolov10BaseConfig() cfg.num_classes = 80 # Build a head fpn_dims = [64, 128, 256] pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80), torch.randn(1, fpn_dims[1], 40, 40), torch.randn(1, fpn_dims[2], 20, 20)] head = Yolov10DetHead(cfg, fpn_dims) # Inference t0 = time.time() cls_feats, reg_feats = head(pyramid_feats) t1 = time.time() print('Time: ', t1 - t0) print("====== Yolov10 Head output ======") for level, (cls_f, reg_f) in enumerate(zip(cls_feats, reg_feats)): print("- Level-{} : ".format(level), cls_f.shape, reg_f.shape) flops, params = profile(head, inputs=(pyramid_feats, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))