# Redesigned YOLOv3: - VOC | Model | Batch | Scale | APval
0.5 | Weight | Logs | |----------|-------|-------|-------------------|--------|--------| | YOLOv3-S | 1xb16 | 640 | 75.5 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v3/releases/download/yolo_tutorial_ckpt/yolov3_s_voc.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v3/releases/download/yolo_tutorial_ckpt/YOLOv3-S-VOC.txt) | - COCO | Model | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | Logs | |----------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|--------| | YOLOv3-S | 1xb16 | 640 | 31.3 | 49.2 | 25.2 | 7.3 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v3/releases/download/yolo_tutorial_ckpt/yolov3_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v3/releases/download/yolo_tutorial_ckpt/YOLOv3-S-COCO.txt) | - For training, we train redesigned YOLOv3 with 300 epochs on COCO. We also use the gradient accumulation. - For data augmentation, we use the RandomAffine, RandomHSV, Mosaic and Mixup augmentation. - For optimizer, we use AdamW with weight decay of 0.05 and per image base lr of 0.001 / 64. - For learning rate scheduler, we use cosine decay scheduler. - For batch size, we set it to 16, and we also use the gradient accumulation to approximate batch size of 256. ## Train YOLOv3 ### Single GPU Taking training YOLOv3-S on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m yolov3_s -bs 16 --fp16 ``` ### Multi GPU Taking training YOLOv3-S on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m yolov3_s -bs 16 --fp16 ``` ## Test YOLOv3 Taking testing YOLOv3-S on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m yolov3_s --weight path/to/yolov3.pth --show ``` ## Evaluate YOLOv3 Taking evaluating YOLOv3-S on COCO-val as the example, ```Shell python eval.py --cuda -d coco --root path/to/coco -m yolov3_s --weight path/to/yolov3.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov3_s --weight path/to/weight --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov3_s --weight path/to/weight --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m yolov3_s --weight path/to/weight --show --gif ```