import torch import torch.nn.functional as F from .matcher import Yolov1Matcher from utils.box_ops import get_ious from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized class SetCriterion(object): def __init__(self, cfg): self.cfg = cfg self.num_classes = cfg.num_classes self.loss_obj_weight = cfg.loss_obj self.loss_cls_weight = cfg.loss_cls self.loss_box_weight = cfg.loss_box # matcher self.matcher = Yolov1Matcher(cfg.num_classes) def loss_objectness(self, pred_obj, gt_obj): loss_obj = F.binary_cross_entropy_with_logits(pred_obj, gt_obj, reduction='none') return loss_obj def loss_classes(self, pred_cls, gt_label): loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_label, reduction='none') return loss_cls def loss_bboxes(self, pred_box, gt_box): # regression loss ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou') loss_box = 1.0 - ious return loss_box def __call__(self, outputs, targets): device = outputs['pred_cls'][0].device stride = outputs['stride'] fmp_size = outputs['fmp_size'] ( gt_objectness, gt_classes, gt_bboxes, ) = self.matcher(fmp_size=fmp_size, stride=stride, targets=targets) # List[B, M, C] -> [B, M, C] -> [BM, C] pred_obj = outputs['pred_obj'].view(-1) # [B, M, 1] -> [BM,] pred_cls = outputs['pred_cls'].flatten(0, 1) # [B, M, C] -> [BM, C] pred_box = outputs['pred_box'].flatten(0, 1) # [B, M, 4] -> [BM, 4] gt_objectness = gt_objectness.view(-1).to(device).float() # [BM,] gt_classes = gt_classes.view(-1, self.num_classes).to(device).float() # [BM, C] gt_bboxes = gt_bboxes.view(-1, 4).to(device).float() # [BM, 4] pos_masks = (gt_objectness > 0) num_fgs = pos_masks.sum() if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_fgs) num_fgs = (num_fgs / get_world_size()).clamp(1.0) # obj loss loss_obj = self.loss_objectness(pred_obj, gt_objectness) loss_obj = loss_obj.sum() / num_fgs # cls loss pred_cls_pos = pred_cls[pos_masks] gt_classes_pos = gt_classes[pos_masks] loss_cls = self.loss_classes(pred_cls_pos, gt_classes_pos) loss_cls = loss_cls.sum() / num_fgs # box loss pred_box_pos = pred_box[pos_masks] gt_bboxes_pos = gt_bboxes[pos_masks] loss_box = self.loss_bboxes(pred_box_pos, gt_bboxes_pos) loss_box = loss_box.sum() / num_fgs # total loss losses = self.loss_obj_weight * loss_obj + \ self.loss_cls_weight * loss_cls + \ self.loss_box_weight * loss_box loss_dict = dict( loss_obj = loss_obj, loss_cls = loss_cls, loss_box = loss_box, losses = losses ) return loss_dict if __name__ == "__main__": pass