import torch import torch.nn as nn # --------------- Model components --------------- from .yolof_backbone import YolofBackbone from .yolof_encoder import DilatedEncoder from .yolof_decoder import YolofHead # --------------- External components --------------- from utils.misc import multiclass_nms # ------------------------ You Only Look One-level Feature ------------------------ class Yolof(nn.Module): def __init__(self, cfg, is_val: bool = False): super(Yolof, self).__init__() # ---------------------- Basic setting ---------------------- self.cfg = cfg self.num_classes = cfg.num_classes ## Post-process parameters self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh self.no_multi_labels = False if is_val else True # ---------------------- Network Parameters ---------------------- self.backbone = YolofBackbone(cfg) self.encoder = DilatedEncoder(cfg, self.backbone.feat_dim, cfg.head_dim) self.decoder = YolofHead(cfg, self.encoder.out_dim, cfg.head_dim) def post_process(self, cls_pred, box_pred): """ Input: cls_pred: (Tensor) [[H x W x KA, C] box_pred: (Tensor) [H x W x KA, 4] """ cls_pred = cls_pred[0] box_pred = box_pred[0] # (H x W x KA x C,) scores_i = cls_pred.sigmoid().flatten() # Keep top k top scoring indices only. num_topk = min(self.topk_candidates, box_pred.size(0)) # torch.sort is actually faster than .topk (at least on GPUs) predicted_prob, topk_idxs = scores_i.sort(descending=True) topk_scores = predicted_prob[:num_topk] topk_idxs = topk_idxs[:num_topk] # filter out the proposals with low confidence score keep_idxs = topk_scores > self.conf_thresh topk_idxs = topk_idxs[keep_idxs] # final scores scores = topk_scores[keep_idxs] # final labels labels = topk_idxs % self.num_classes # final bboxes anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor') bboxes = box_pred[anchor_idxs] # to cpu & numpy scores = scores.cpu().numpy() labels = labels.cpu().numpy() bboxes = bboxes.cpu().numpy() # nms scores, labels, bboxes = multiclass_nms( scores, labels, bboxes, self.nms_thresh, self.num_classes) return bboxes, scores, labels def forward(self, x): x = self.backbone(x) x = self.encoder(x) outputs = self.decoder(x) if not self.training: # ---------------- PostProcess ---------------- cls_pred = outputs["pred_cls"] box_pred = outputs["pred_box"] bboxes, scores, labels = self.post_process(cls_pred, box_pred) outputs = { 'scores': scores, 'labels': labels, 'bboxes': bboxes } return outputs