# ------------------------------------------------------------------------ # Plain-DETR # Copyright (c) 2023 Xi'an Jiaotong University & Microsoft Research Asia. # Licensed under The MIT License [see LICENSE for details] # ------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ """ Modules to compute the matching cost and solve the corresponding LSAP. """ import torch from scipy.optimize import linear_sum_assignment from torch import nn from utils.box_ops import box_cxcywh_to_xyxy, generalized_box_iou, bbox2delta class HungarianMatcher(nn.Module): def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, ): super().__init__() self.cost_class = cost_class self.cost_bbox = cost_bbox self.cost_giou = cost_giou assert ( cost_class != 0 or cost_bbox != 0 or cost_giou != 0 ), "all costs cant be 0" def forward(self, outputs, targets): """ Performs the matching Params: outputs: This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ with torch.no_grad(): bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() out_bbox = outputs["pred_boxes"].flatten(0, 1) # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]).to(out_prob.device) tgt_bbox = torch.cat([v["boxes"] for v in targets]).to(out_prob.device) # Compute the classification cost. alpha = 0.25 gamma = 2.0 neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids] # Compute the L1 cost between boxes out_delta = outputs["pred_deltas"].flatten(0, 1) out_bbox_old = outputs["pred_boxes_old"].flatten(0, 1) tgt_delta = bbox2delta(out_bbox_old, tgt_bbox) cost_bbox = torch.cdist(out_delta[:, None], tgt_delta, p=1).squeeze(1) # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox) ) # Final cost matrix C = self.cost_bbox * cost_bbox + \ self.cost_class * cost_class + \ self.cost_giou * cost_giou C = C.view(bs, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), # batch index torch.as_tensor(j, dtype=torch.int64)) # query index for i, j in indices]