import torch import torch.nn as nn import torch.nn.functional as F from typing import List try: from .modules import ConvModule, C3k2fBlock except: from modules import ConvModule, C3k2fBlock class Yolo11PaFPN(nn.Module): def __init__(self, cfg, in_dims :List = [256, 512, 1024]): super(Yolo11PaFPN, self).__init__() # --------------------------- Basic Parameters --------------------------- self.model_scale = cfg.model_scale self.in_dims = in_dims[::-1] self.out_dims = [round(256*cfg.width), round(512*cfg.width), round(512*cfg.width*cfg.ratio)] # ----------------------------- Yolo11's Top-down FPN ----------------------------- ## P5 -> P4 self.top_down_layer_1 = C3k2fBlock(in_dim = self.in_dims[0] + self.in_dims[1], out_dim = round(512*cfg.width), num_blocks = round(2 * cfg.depth), shortcut = True, expansion = 0.5, use_c3k = False if self.model_scale in "ns" else True, ) ## P4 -> P3 self.top_down_layer_2 = C3k2fBlock(in_dim = self.in_dims[2] + round(512*cfg.width), out_dim = round(256*cfg.width), num_blocks = round(2 * cfg.depth), shortcut = True, expansion = 0.5, use_c3k = False if self.model_scale in "ns" else True, ) # ----------------------------- Yolo11's Bottom-up PAN ----------------------------- ## P3 -> P4 self.dowmsample_layer_1 = ConvModule(round(256*cfg.width), round(256*cfg.width), kernel_size=3, stride=2) self.bottom_up_layer_1 = C3k2fBlock(in_dim = round(256*cfg.width) + round(512*cfg.width), out_dim = round(512*cfg.width), num_blocks = round(2 * cfg.depth), shortcut = True, expansion = 0.5, use_c3k = False if self.model_scale in "ns" else True, ) ## P4 -> P5 self.dowmsample_layer_2 = ConvModule(round(512*cfg.width), round(512*cfg.width), kernel_size=3, stride=2) self.bottom_up_layer_2 = C3k2fBlock(in_dim = round(512*cfg.width) + self.in_dims[0], out_dim = round(512*cfg.width*cfg.ratio), num_blocks = round(2 * cfg.depth), shortcut = True, expansion = 0.5, use_c3k = True, ) self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): m.reset_parameters() def forward(self, features): c3, c4, c5 = features # ------------------ Top down FPN ------------------ ## P5 -> P4 p5_up = F.interpolate(c5, scale_factor=2.0) p4 = self.top_down_layer_1(torch.cat([p5_up, c4], dim=1)) ## P4 -> P3 p4_up = F.interpolate(p4, scale_factor=2.0) p3 = self.top_down_layer_2(torch.cat([p4_up, c3], dim=1)) # ------------------ Bottom up FPN ------------------ ## p3 -> P4 p3_ds = self.dowmsample_layer_1(p3) p4 = self.bottom_up_layer_1(torch.cat([p3_ds, p4], dim=1)) ## P4 -> 5 p4_ds = self.dowmsample_layer_2(p4) p5 = self.bottom_up_layer_2(torch.cat([p4_ds, c5], dim=1)) out_feats = [p3, p4, p5] # [P3, P4, P5] return out_feats if __name__=='__main__': import time from thop import profile # Model config # YOLOv8-Base config class Yolov8BaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.width = 0.50 self.depth = 0.34 self.ratio = 2.0 self.out_stride = [8, 16, 32] self.max_stride = 32 self.model_scale = "s" cfg = Yolov8BaseConfig() # Build a head in_dims = [128, 256, 512] fpn = Yolo11PaFPN(cfg, in_dims) # Inference x = [torch.randn(1, in_dims[0], 80, 80), torch.randn(1, in_dims[1], 40, 40), torch.randn(1, in_dims[2], 20, 20)] t0 = time.time() output = fpn(x) t1 = time.time() print('Time: ', t1 - t0) print('====== FPN output ====== ') for level, feat in enumerate(output): print("- Level-{} : ".format(level), feat.shape) flops, params = profile(fpn, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))