import torch import torch.nn as nn import torch.nn.functional as F from typing import List # ----------------- CNN modules ----------------- class ConvModule(nn.Module): def __init__(self, in_dim, # in channels out_dim, # out channels kernel_size=1, # kernel size stride=1, # padding groups=1, # groups use_act: bool = True, ): super(ConvModule, self).__init__() self.conv = nn.Conv2d(in_dim, out_dim, kernel_size, padding=kernel_size//2, stride=stride, groups=groups, bias=False) self.norm = nn.BatchNorm2d(out_dim) self.act = nn.SiLU(inplace=True) if use_act else nn.Identity() def forward(self, x): return self.act(self.norm(self.conv(x))) class Bottleneck(nn.Module): def __init__(self, in_dim :int, out_dim :int, kernel_size :List = [3, 3], shortcut :bool = False, expansion :float = 0.5, ) -> None: super(Bottleneck, self).__init__() # ----------------- Network setting ----------------- inter_dim = int(out_dim * expansion) self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=kernel_size[0], stride=1) self.cv2 = ConvModule(inter_dim, out_dim, kernel_size=kernel_size[1], stride=1) self.shortcut = shortcut and in_dim == out_dim def forward(self, x): h = self.cv2(self.cv1(x)) return x + h if self.shortcut else h class C3kBlock(nn.Module): def __init__(self, in_dim: int, out_dim: int, num_blocks: int = 1, shortcut: bool = True, expansion: float = 0.5, ): super().__init__() inter_dim = int(out_dim * expansion) # hidden channels self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1) self.cv2 = ConvModule(in_dim, inter_dim, kernel_size=1) self.cv3 = ConvModule(2 * inter_dim, out_dim, kernel_size=1) # optional act=FReLU(c2) self.m = nn.Sequential(*[ Bottleneck(in_dim = inter_dim, out_dim = inter_dim, kernel_size = [3, 3], shortcut = shortcut, expansion = 1.0, ) for _ in range(num_blocks)]) def forward(self, x): return self.cv3(torch.cat([self.m(self.cv1(x)), self.cv2(x)], dim=1)) class SPPF(nn.Module): def __init__(self, in_dim, out_dim, spp_pooling_size: int = 5, neck_expand_ratio:float = 0.5): super().__init__() ## ----------- Basic Parameters ----------- inter_dim = round(in_dim * neck_expand_ratio) self.out_dim = out_dim ## ----------- Network Parameters ----------- self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1, stride=1) self.cv2 = ConvModule(inter_dim * 4, out_dim, kernel_size=1, stride=1) self.m = nn.MaxPool2d(kernel_size=spp_pooling_size, stride=1, padding=spp_pooling_size // 2) def forward(self, x): x = self.cv1(x) y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) # ----------------- Attention modules ----------------- class Attention(nn.Module): def __init__(self, dim, num_heads=8, attn_ratio=0.5): super().__init__() self.num_heads = num_heads self.head_dim = dim // num_heads self.key_dim = int(self.head_dim * attn_ratio) self.scale = self.key_dim**-0.5 nh_kd = self.key_dim * num_heads h = dim + nh_kd * 2 self.qkv = ConvModule(dim, h, kernel_size=1, use_act=False) self.proj = ConvModule(dim, dim, kernel_size=1, use_act=False) self.pe = ConvModule(dim, dim, kernel_size=3, groups=dim, use_act=False) def forward(self, x): bs, c, h, w = x.shape seq_len = h * w qkv = self.qkv(x) q, k, v = qkv.view(bs, self.num_heads, self.key_dim * 2 + self.head_dim, seq_len).split( [self.key_dim, self.key_dim, self.head_dim], dim=2 ) attn = (q.transpose(-2, -1) @ k) * self.scale attn = attn.softmax(dim=-1) x = (v @ attn.transpose(-2, -1)).view(bs, c, h, w) + self.pe(v.reshape(bs, c, h, w)) x = self.proj(x) return x class PSABlock(nn.Module): def __init__(self, in_dim, attn_ratio=0.5, num_heads=4, shortcut=True): super().__init__() self.attn = Attention(in_dim, attn_ratio=attn_ratio, num_heads=num_heads) self.ffn = nn.Sequential(ConvModule(in_dim, in_dim * 2, kernel_size=1), ConvModule(in_dim * 2, in_dim, kernel_size=1, use_act=False)) self.add = shortcut def forward(self, x): x = x + self.attn(x) if self.add else self.attn(x) x = x + self.ffn(x) if self.add else self.ffn(x) return x class C2PSA(nn.Module): def __init__(self, in_dim, out_dim, num_blocks=1, expansion=0.5): super().__init__() assert in_dim == out_dim inter_dim = int(in_dim * expansion) self.cv1 = ConvModule(in_dim, 2 * inter_dim, kernel_size=1) self.cv2 = ConvModule(2 * inter_dim, in_dim, kernel_size=1) self.m = nn.Sequential(*[ PSABlock(in_dim = inter_dim, attn_ratio = 0.5, num_heads = inter_dim // 64 ) for _ in range(num_blocks)]) def forward(self, x): x1, x2 = torch.chunk(self.cv1(x), chunks=2, dim=1) x2 = self.m(x2) return self.cv2(torch.cat([x1, x2], dim=1)) # ----------------- YOLO11 components ----------------- class C3k2fBlock(nn.Module): def __init__(self, in_dim, out_dim, num_blocks=1, use_c3k=True, expansion=0.5, shortcut=True): super().__init__() inter_dim = int(out_dim * expansion) # hidden channels self.cv1 = ConvModule(in_dim, 2 * inter_dim, kernel_size=1) self.cv2 = ConvModule((2 + num_blocks) * inter_dim, out_dim, kernel_size=1) if use_c3k: self.m = nn.ModuleList( C3kBlock(inter_dim, inter_dim, 2, shortcut) for _ in range(num_blocks) ) else: self.m = nn.ModuleList( Bottleneck(inter_dim, inter_dim, [3, 3], shortcut, expansion=0.5) for _ in range(num_blocks) ) def _forward_impl(self, x): # Input proj x1, x2 = torch.chunk(self.cv1(x), 2, dim=1) out = list([x1, x2]) # Bottlenecl out.extend(m(out[-1]) for m in self.m) # Output proj out = self.cv2(torch.cat(out, dim=1)) return out def forward(self, x): return self._forward_impl(x) class DflLayer(nn.Module): def __init__(self, reg_max=16): """Initialize a convolutional layer with a given number of input channels.""" super().__init__() self.reg_max = reg_max proj_init = torch.arange(reg_max, dtype=torch.float) self.proj_weight = nn.Parameter(proj_init.view([1, reg_max, 1, 1]), requires_grad=False) def forward(self, pred_reg, anchor, stride): bs, hw = pred_reg.shape[:2] # [bs, hw, 4*rm] -> [bs, 4*rm, hw] -> [bs, 4, rm, hw] pred_reg = pred_reg.permute(0, 2, 1).reshape(bs, 4, -1, hw) # [bs, 4, rm, hw] -> [bs, rm, 4, hw] pred_reg = pred_reg.permute(0, 2, 1, 3).contiguous() # [bs, rm, 4, hw] -> [bs, 1, 4, hw] delta_pred = F.conv2d(F.softmax(pred_reg, dim=1), self.proj_weight) # [bs, 1, 4, hw] -> [bs, 4, hw] -> [bs, hw, 4] delta_pred = delta_pred.view(bs, 4, hw).permute(0, 2, 1).contiguous() delta_pred *= stride # Decode bbox: tlbr -> xyxy x1y1_pred = anchor - delta_pred[..., :2] x2y2_pred = anchor + delta_pred[..., 2:] box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1) return box_pred