|
|
@@ -10,7 +10,7 @@ from utils.misc import MetricLogger, SmoothedValue
|
|
|
from utils.vis_tools import vis_data
|
|
|
|
|
|
# ----------------- Optimizer & LrScheduler Components -----------------
|
|
|
-from utils.solver.optimizer import build_yolo_optimizer
|
|
|
+from utils.solver.optimizer import build_simple_optimizer, build_yolo_optimizer
|
|
|
from utils.solver.lr_scheduler import LinearWarmUpLrScheduler, build_lr_scheduler
|
|
|
|
|
|
|
|
|
@@ -295,3 +295,226 @@ class YoloTrainer(object):
|
|
|
if self.train_loader.dataset.copy_paste > 0.:
|
|
|
print(' - Close < Copy-paste Augmentation > ...')
|
|
|
self.train_loader.dataset.copy_paste = 0.
|
|
|
+
|
|
|
+class SimpleTrainer(object):
|
|
|
+ def __init__(self,
|
|
|
+ # Basic parameters
|
|
|
+ args,
|
|
|
+ cfg,
|
|
|
+ device,
|
|
|
+ # Model parameters
|
|
|
+ model,
|
|
|
+ criterion,
|
|
|
+ # Data parameters
|
|
|
+ train_loader,
|
|
|
+ evaluator,
|
|
|
+ ):
|
|
|
+ # ------------------- basic parameters -------------------
|
|
|
+ self.args = args
|
|
|
+ self.cfg = cfg
|
|
|
+ self.epoch = 0
|
|
|
+ self.best_map = -1.
|
|
|
+ self.device = device
|
|
|
+ self.criterion = criterion
|
|
|
+
|
|
|
+ # path to save model
|
|
|
+ self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
|
|
|
+ os.makedirs(self.path_to_save, exist_ok=True)
|
|
|
+
|
|
|
+ # ---------------------------- Dataset & Dataloader ----------------------------
|
|
|
+ self.train_loader = train_loader
|
|
|
+
|
|
|
+ # ---------------------------- Evaluator ----------------------------
|
|
|
+ self.evaluator = evaluator
|
|
|
+
|
|
|
+ # ---------------------------- Build Optimizer ----------------------------
|
|
|
+ self.grad_accumulate = max(cfg.batch_size_base // args.batch_size, 1)
|
|
|
+ cfg.base_lr = cfg.base_lr / cfg.batch_size_base * args.batch_size * self.grad_accumulate # Auto scale learning rate
|
|
|
+ cfg.min_lr = cfg.base_lr * cfg.min_lr_ratio
|
|
|
+ self.optimizer, self.start_epoch = build_simple_optimizer(cfg, model, args.resume)
|
|
|
+
|
|
|
+ # ---------------------------- Build LR Scheduler ----------------------------
|
|
|
+ self.lr_scheduler_warmup = LinearWarmUpLrScheduler(cfg.warmup_iters, cfg.base_lr, cfg.warmup_bias_lr)
|
|
|
+ self.lr_scheduler = build_lr_scheduler(cfg, self.optimizer, args.resume)
|
|
|
+
|
|
|
+ self.best_map = cfg.best_map / 100.0
|
|
|
+ print("Best mAP metric: {}".format(self.best_map))
|
|
|
+
|
|
|
+ def train(self, model):
|
|
|
+ for epoch in range(self.start_epoch, self.cfg.max_epoch):
|
|
|
+ if self.args.distributed:
|
|
|
+ self.train_loader.batch_sampler.sampler.set_epoch(epoch)
|
|
|
+
|
|
|
+ # train one epoch
|
|
|
+ self.epoch = epoch
|
|
|
+ self.train_one_epoch(model)
|
|
|
+
|
|
|
+ # LR Schedule
|
|
|
+ self.lr_scheduler.step()
|
|
|
+
|
|
|
+ # eval one epoch
|
|
|
+ model_eval = model.module if self.args.distributed else model
|
|
|
+ if (epoch % self.cfg.eval_epoch) == 0 or (epoch == self.cfg.max_epoch - 1):
|
|
|
+ self.eval(model_eval)
|
|
|
+
|
|
|
+ if self.args.debug:
|
|
|
+ print("For debug mode, we only train 1 epoch")
|
|
|
+ break
|
|
|
+
|
|
|
+ def eval(self, model):
|
|
|
+ # set eval mode
|
|
|
+ model.eval()
|
|
|
+ cur_map = -1.
|
|
|
+ to_save = False
|
|
|
+
|
|
|
+ if distributed_utils.is_main_process():
|
|
|
+ if self.evaluator is None:
|
|
|
+ print('No evaluator ... save model and go on training.')
|
|
|
+ to_save = True
|
|
|
+ weight_name = '{}_no_eval.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
+ else:
|
|
|
+ print('Eval ...')
|
|
|
+ # Evaluate
|
|
|
+ with torch.no_grad():
|
|
|
+ self.evaluator.evaluate(model)
|
|
|
+
|
|
|
+ cur_map = self.evaluator.map
|
|
|
+ if cur_map > self.best_map:
|
|
|
+ # update best-map
|
|
|
+ self.best_map = cur_map
|
|
|
+ to_save = True
|
|
|
+
|
|
|
+ # Save model
|
|
|
+ if to_save:
|
|
|
+ print('Saving state, epoch:', self.epoch)
|
|
|
+ weight_name = '{}_best.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
+ state_dicts = {
|
|
|
+ 'model': model.state_dict(),
|
|
|
+ 'mAP': round(cur_map*100, 3),
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'lr_scheduler': self.lr_scheduler.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args,
|
|
|
+ }
|
|
|
+ torch.save(state_dicts, checkpoint_path)
|
|
|
+
|
|
|
+ if self.args.distributed:
|
|
|
+ # wait for all processes to synchronize
|
|
|
+ dist.barrier()
|
|
|
+
|
|
|
+ # set train mode.
|
|
|
+ model.train()
|
|
|
+
|
|
|
+ def train_one_epoch(self, model):
|
|
|
+ metric_logger = MetricLogger(delimiter=" ")
|
|
|
+ metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
|
|
+ metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
|
|
|
+ metric_logger.add_meter('gnorm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
|
|
|
+ header = 'Epoch: [{} / {}]'.format(self.epoch, self.cfg.max_epoch)
|
|
|
+ epoch_size = len(self.train_loader)
|
|
|
+ print_freq = 10
|
|
|
+ gnorm = 0.0
|
|
|
+
|
|
|
+ # basic parameters
|
|
|
+ epoch_size = len(self.train_loader)
|
|
|
+ img_size = self.cfg.train_img_size
|
|
|
+ nw = self.cfg.warmup_iters
|
|
|
+
|
|
|
+ # Train one epoch
|
|
|
+ for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
|
|
|
+ ni = iter_i + self.epoch * epoch_size
|
|
|
+
|
|
|
+ # Warmup
|
|
|
+ if nw > 0 and ni < nw:
|
|
|
+ self.lr_scheduler_warmup(ni, self.optimizer)
|
|
|
+ elif ni == nw:
|
|
|
+ print("Warmup stage is over.")
|
|
|
+ self.lr_scheduler_warmup.set_lr(self.optimizer, self.cfg.base_lr)
|
|
|
+
|
|
|
+ # To device
|
|
|
+ images = images.to(self.device, non_blocking=True).float()
|
|
|
+
|
|
|
+ # Multi scale
|
|
|
+ images, targets, img_size = self.rescale_image_targets(
|
|
|
+ images, targets, 32, self.cfg.multi_scale)
|
|
|
+
|
|
|
+ # Visualize train targets
|
|
|
+ if self.args.vis_tgt:
|
|
|
+ vis_data(images,
|
|
|
+ targets,
|
|
|
+ self.cfg.num_classes,
|
|
|
+ self.cfg.pixel_mean,
|
|
|
+ self.cfg.pixel_std,
|
|
|
+ )
|
|
|
+
|
|
|
+ # Inference
|
|
|
+ outputs = model(images)
|
|
|
+
|
|
|
+ # Compute loss
|
|
|
+ loss_dict = self.criterion(outputs=outputs, targets=targets)
|
|
|
+ losses = loss_dict['losses']
|
|
|
+ losses /= self.grad_accumulate
|
|
|
+ loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
|
|
|
+
|
|
|
+ # Backward
|
|
|
+ losses.backward()
|
|
|
+
|
|
|
+ # Optimize
|
|
|
+ if (iter_i + 1) % self.grad_accumulate == 0:
|
|
|
+ gnorm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.cfg.clip_max_norm)
|
|
|
+ self.optimizer.step()
|
|
|
+ self.optimizer.zero_grad()
|
|
|
+
|
|
|
+ # Update log
|
|
|
+ metric_logger.update(**loss_dict_reduced)
|
|
|
+ metric_logger.update(lr=self.optimizer.param_groups[0]["lr"])
|
|
|
+ metric_logger.update(size=img_size)
|
|
|
+ metric_logger.update(gnorm=gnorm)
|
|
|
+
|
|
|
+ if self.args.debug:
|
|
|
+ print("For debug mode, we only train 1 iteration")
|
|
|
+ break
|
|
|
+
|
|
|
+ # Gather the stats from all processes
|
|
|
+ metric_logger.synchronize_between_processes()
|
|
|
+ print("Averaged stats:", metric_logger)
|
|
|
+
|
|
|
+ def rescale_image_targets(self, images, targets, max_stride, multi_scale_range=[0.5, 1.5]):
|
|
|
+ """
|
|
|
+ Deployed for Multi scale trick.
|
|
|
+ """
|
|
|
+ # During training phase, the shape of input image is square.
|
|
|
+ old_img_size = images.shape[-1]
|
|
|
+ min_img_size = old_img_size * multi_scale_range[0]
|
|
|
+ max_img_size = old_img_size * multi_scale_range[1]
|
|
|
+
|
|
|
+ # Choose a new image size
|
|
|
+ new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
|
|
|
+
|
|
|
+ # Resize
|
|
|
+ if new_img_size != old_img_size:
|
|
|
+ # interpolate
|
|
|
+ images = torch.nn.functional.interpolate(
|
|
|
+ input=images,
|
|
|
+ size=new_img_size,
|
|
|
+ mode='bilinear',
|
|
|
+ align_corners=False)
|
|
|
+ # rescale targets
|
|
|
+ for tgt in targets:
|
|
|
+ boxes = tgt["boxes"].clone()
|
|
|
+ labels = tgt["labels"].clone()
|
|
|
+ boxes = torch.clamp(boxes, 0, old_img_size)
|
|
|
+ # rescale box
|
|
|
+ boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
|
|
|
+ boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
|
|
|
+ # refine tgt
|
|
|
+ tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
+ min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
+ keep = (min_tgt_size >= 8)
|
|
|
+
|
|
|
+ tgt["boxes"] = boxes[keep]
|
|
|
+ tgt["labels"] = labels[keep]
|
|
|
+
|
|
|
+ return images, targets, new_img_size
|