|
|
@@ -12,6 +12,59 @@
|
|
|
## 准备工作
|
|
|
在使用此代码前,需要读者完成一些必要的环境配置,如python语言的安装、pytorch框架的安装等,随后,遵循`yolo/`和`odlab/`两个文件中的`README.md`文件所提供的内容,配置相关的环境、准备学习所需的数据集,并了解如何使用此项目代码进行训练和测试。如果读者想使用此代码去训练自定义的数据集,也请遵从这两个文件夹中的`README.md`文件中所给出的指示和说明来准备数据,并训练和测试。
|
|
|
|
|
|
+## 实验结果
|
|
|
+### YOLO系列
|
|
|
+下面的两个表分别汇报了本项目的YOLO系列的small量级的模型在VOC和COCO数据集上的性能指标,
|
|
|
+
|
|
|
+- VOC
|
|
|
+
|
|
|
+| Model | Batch | Scale | AP<sup>val<br>0.5 | Weight | Logs |
|
|
|
+|-------------|-------|-------|-------------------|--------|--------|
|
|
|
+| YOLOv1-R18 | 1xb16 | 640 | | [ckpt]() | [log]() |
|
|
|
+| YOLOv2-R18 | 1xb16 | 640 | | [ckpt]() | [log]() |
|
|
|
+| YOLOv3-S | 1xb16 | 640 | | [ckpt]() | [log]() |
|
|
|
+| YOLOv5-S | 1xb16 | 640 | | [ckpt]() | [log]() |
|
|
|
+| YOLOv5-AF-S | 1xb16 | 640 | | [ckpt]() | [log]() |
|
|
|
+| YOLOv8-S | 1xb16 | 640 | | [ckpt]() | [log]() |
|
|
|
+| GELAN-S | 1xb16 | 640 | | [ckpt]() | [log]() |
|
|
|
+
|
|
|
+- COCO
|
|
|
+
|
|
|
+| Model | Batch | Scale | FPS<sup>FP32<br>RTX 4060 |AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight | Logs |
|
|
|
+|-------------|-------|-------|--------------------------|------------------------|-------------------|-------------------|--------------------|--------|------|
|
|
|
+| YOLOv1-R18 | 1xb16 | 640 | | 27.6 | 46.8 | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolov1_r18_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOv1-R18-COCO.txt) |
|
|
|
+| YOLOv2-R18 | 1xb16 | 640 | | 28.4 | 47.4 | 38.0 | 21.5 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolov2_r18_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOv2-R18-COCO.txt) |
|
|
|
+| YOLOv3-S | 1xb16 | 640 | | 31.3 | 49.2 | 25.2 | 7.3 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v3/releases/download/yolo_tutorial_ckpt/yolov3_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v3/releases/download/yolo_tutorial_ckpt/YOLOv3-S-COCO.txt) |
|
|
|
+| YOLOv5-S | 1xb16 | 640 | | 38.8 | 56.9 | 27.3 | 9.0 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/yolov5_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/YOLOv5-S-COCO.txt) |
|
|
|
+| YOLOv5-AF-S | 1xb16 | 640 | | 39.6 | 58.7 | 26.9 | 8.9 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/yolov5_af_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/YOLOv5-AF-S-COCO.txt) |
|
|
|
+| YOLOv8-S | 1xb16 | 640 | | | | 28.4 | 11.3 | | |
|
|
|
+| GELAN-S | 1xb16 | 640 | | | | 26.9 | 8.9 | | |
|
|
|
+
|
|
|
+### RT-DETR系列
|
|
|
+下表汇报了本项目的RT-DETR系列在COCO数据集上的性能指标,
|
|
|
+
|
|
|
+- COCO
|
|
|
+
|
|
|
+| Model | Batch | Scale | FPS<sup>FP32<br>RTX 4060 |AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight | Logs |
|
|
|
+|--------------|-------|-------|--------------------------|------------------------|-------------------|-------------------|--------------------|--------|------|
|
|
|
+| RT-DETR-R18 | 4xb4 | 640 | | 45.5 | 63.5 | 66.8 | 21.0 | [ckpt](https://github.com/yjh0410/ODLab-World/releases/download/coco_weight/rtdetr_r18_coco.pth) | [log](https://github.com/yjh0410/ODLab-World/releases/download/coco_weight/RT-DETR-R18-COCO.txt)|
|
|
|
+| RT-DETR-R50 | 4xb4 | 640 | | 50.6 | 69.4 | 112.1 | 36.7 | [ckpt](https://github.com/yjh0410/ODLab-World/releases/download/coco_weight/rtdetr_r50_coco.pth) | [log](https://github.com/yjh0410/ODLab-World/releases/download/coco_weight/RT-DETR-R50-COCO.txt)|
|
|
|
+
|
|
|
+### ODLab系列
|
|
|
+下表汇报了本项目的ODLab系列在COCO数据集上的性能指标,
|
|
|
+
|
|
|
+- COCO
|
|
|
+
|
|
|
+| Model | Sclae | FPS<sup>FP32<br>RTX 4060 | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | Weight | Logs |
|
|
|
+|----------------|------------|--------------------------|------------------------|-------------------|--------|------|
|
|
|
+| FCOS_R18_1x | 800,1333 | 24 | 34.0 | 52.2 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/fcos_r18_1x_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/FCOS-R18-1x.txt) |
|
|
|
+| FCOS_R50_1x | 800,1333 | 9 | 39.0 | 58.3 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/fcos_r50_1x_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/FCOS-R50-1x.txt) |
|
|
|
+| FCOS_RT_R18_3x | 512,736 | 56 | 35.8 | 53.3 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/fcos_rt_r18_3x_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/FCOS-RT-R18-3x.txt) |
|
|
|
+| FCOS_RT_R50_3x | 512,736 | 34 | 40.7 | 59.3 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/fcos_rt_r50_3x_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/FCOS-RT-R50-3x.txt) |
|
|
|
+| YOLOF_R18_C5_1x | 800,1333 | 54 | 32.8 | 51.4 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolof_r18_c5_1x_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOF-R18-C5-1x.txt) |
|
|
|
+| YOLOF_R50_C5_1x | 800,1333 | 21 | 37.7 | 57.2 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolof_r50_c5_1x_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOF-R50-C5-1x.txt) |
|
|
|
+
|
|
|
+
|
|
|
# The source code of the second edition of the book "YOLO Object Detection"
|
|
|
This project is the source code of the "YOLO Target Detection" book (second edition), which includes all YOLO models, RT-DETR models, DETR models, FCOS models, and YOLOF models involved in this book. For YOLO and RT-DETR, readers can find all source codes in the `yolo/` folder of the project; for DETR, FCOS and YOLOF models, readers can find all source codes in the `odlab/` folder of the project.
|
|
|
|