|
@@ -38,7 +38,7 @@
|
|
|
| YOLOv5-S | 1xb16 | 640 | 80 | 38.8 | 56.9 | 27.3 | 9.0 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/yolov5_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/YOLOv5-S-COCO.txt) |
|
|
| YOLOv5-S | 1xb16 | 640 | 80 | 38.8 | 56.9 | 27.3 | 9.0 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/yolov5_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/YOLOv5-S-COCO.txt) |
|
|
|
| YOLOv5-AF-S | 1xb16 | 640 | 83 | 39.6 | 58.7 | 26.9 | 8.9 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/yolov5_af_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/YOLOv5-AF-S-COCO.txt) |
|
|
| YOLOv5-AF-S | 1xb16 | 640 | 83 | 39.6 | 58.7 | 26.9 | 8.9 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/yolov5_af_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/YOLOv5-AF-S-COCO.txt) |
|
|
|
| YOLOv8-S | 1xb16 | 640 | | 42.5 | 59.3 | 28.4 | 11.3 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/yolov8_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/YOLOv8-S-COCO.txt) |
|
|
| YOLOv8-S | 1xb16 | 640 | | 42.5 | 59.3 | 28.4 | 11.3 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/yolov8_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/YOLOv8-S-COCO.txt) |
|
|
|
-| GELAN-S | 1xb16 | 640 | | | | 26.9 | 8.9 | | |
|
|
|
|
|
|
|
+| GELAN-S | 1xb16 | 640 | | | | 26.4 | 7.1 | | |
|
|
|
|
|
|
|
|
### RT-DETR系列
|
|
### RT-DETR系列
|
|
|
下表汇报了本项目的RT-DETR系列在COCO数据集上的性能指标。所有模型都采用4张3090显卡训练的,在训练中,每张3090显卡上的batch size被设置为4,并使用多卡同步BN来计算BN层的统计量。需要说明的是,官方的RT-DETR所汇报的FPS指标,是经过各种加速处理后所测得的,因而会很高,而这里我们没有做加速处理,也没有编译CUDA版本的Deformable Attention算子,纯纯的PyTorch框架实现的,且使用的是4060显卡,而非诸如3090和V100等高算力显卡,因此,FPS指标会显著低于论文中所汇报的指标。
|
|
下表汇报了本项目的RT-DETR系列在COCO数据集上的性能指标。所有模型都采用4张3090显卡训练的,在训练中,每张3090显卡上的batch size被设置为4,并使用多卡同步BN来计算BN层的统计量。需要说明的是,官方的RT-DETR所汇报的FPS指标,是经过各种加速处理后所测得的,因而会很高,而这里我们没有做加速处理,也没有编译CUDA版本的Deformable Attention算子,纯纯的PyTorch框架实现的,且使用的是4060显卡,而非诸如3090和V100等高算力显卡,因此,FPS指标会显著低于论文中所汇报的指标。
|