|
@@ -0,0 +1,60 @@
|
|
|
|
|
+# Redesigned YOLOv3:
|
|
|
|
|
+
|
|
|
|
|
+- VOC
|
|
|
|
|
+
|
|
|
|
|
+| Model | Batch | Scale | AP<sup>val<br>0.5 | Weight | Logs |
|
|
|
|
|
+|----------|-------|-------|-------------------|--------|--------|
|
|
|
|
|
+| YOLOv3-S | 1xb16 | 640 | 75.5 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v3/releases/download/yolo_tutorial_ckpt/yolov3_s_voc.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v3/releases/download/yolo_tutorial_ckpt/YOLOv3-S-VOC.txt) |
|
|
|
|
|
+
|
|
|
|
|
+- COCO
|
|
|
|
|
+
|
|
|
|
|
+| Model | Batch | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight | Logs |
|
|
|
|
|
+|----------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|--------|
|
|
|
|
|
+| YOLOv3-S | 1xb16 | 640 | | | 25.2 | 7.3 | | |
|
|
|
|
|
+
|
|
|
|
|
+- For training, we train redesigned YOLOv3 with 150 epochs on COCO. We also gradient accumulate.
|
|
|
|
|
+- For data augmentation, we only use the large scale jitter (LSJ), no Mosaic or Mixup augmentation.
|
|
|
|
|
+- For optimizer, we use SGD with momentum 0.937, weight decay 0.0005 and base lr 0.01.
|
|
|
|
|
+- For learning rate scheduler, we use linear decay scheduler.
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+## Train YOLOv3
|
|
|
|
|
+### Single GPU
|
|
|
|
|
+Taking training YOLOv3 on COCO as the example,
|
|
|
|
|
+```Shell
|
|
|
|
|
+python train.py --cuda -d coco --root path/to/coco -m yolov3 -bs 16 -size 640 --wp_epoch 3 --max_epoch 150 --eval_epoch 10 --no_aug_epoch 10 --ema --fp16 --multi_scale
|
|
|
|
|
+```
|
|
|
|
|
+
|
|
|
|
|
+### Multi GPU
|
|
|
|
|
+Taking training YOLOv3 on COCO as the example,
|
|
|
|
|
+```Shell
|
|
|
|
|
+python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov3 -bs 128 -size 640 --wp_epoch 3 --max_epoch 150 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/
|
|
|
|
|
+```
|
|
|
|
|
+
|
|
|
|
|
+## Test YOLOv3
|
|
|
|
|
+Taking testing YOLOv3 on COCO-val as the example,
|
|
|
|
|
+```Shell
|
|
|
|
|
+python test.py --cuda -d coco --root path/to/coco -m yolov3 --weight path/to/yolov3.pth -size 640 -vt 0.3 --show
|
|
|
|
|
+```
|
|
|
|
|
+
|
|
|
|
|
+## Evaluate YOLOv3
|
|
|
|
|
+Taking evaluating YOLOv3 on COCO-val as the example,
|
|
|
|
|
+```Shell
|
|
|
|
|
+python eval.py --cuda -d coco-val --root path/to/coco -m yolov3 --weight path/to/yolov3.pth
|
|
|
|
|
+```
|
|
|
|
|
+
|
|
|
|
|
+## Demo
|
|
|
|
|
+### Detect with Image
|
|
|
|
|
+```Shell
|
|
|
|
|
+python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov3 --weight path/to/weight -size 640 -vt 0.3 --show
|
|
|
|
|
+```
|
|
|
|
|
+
|
|
|
|
|
+### Detect with Video
|
|
|
|
|
+```Shell
|
|
|
|
|
+python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov3 --weight path/to/weight -size 640 -vt 0.3 --show --gif
|
|
|
|
|
+```
|
|
|
|
|
+
|
|
|
|
|
+### Detect with Camera
|
|
|
|
|
+```Shell
|
|
|
|
|
+python demo.py --mode camera --cuda -m yolov3 --weight path/to/weight -size 640 -vt 0.3 --show --gif
|
|
|
|
|
+```
|