|
|
@@ -1,8 +1,16 @@
|
|
|
# Redesigned YOLOv1:
|
|
|
|
|
|
+- VOC
|
|
|
+
|
|
|
+| Model | Backbone | Batch | Scale | AP<sup>val<br>0.5 | Weight |
|
|
|
+|--------|------------|-------|-------|-------------------|--------|
|
|
|
+| YOLOv1 | ResNet-18 | 1xb16 | 640 | | |
|
|
|
+
|
|
|
+- COCO
|
|
|
+
|
|
|
| Model | Backbone | Batch | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|--------|------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
-| YOLOv1 | ResNet-18 | 1xb16 | 640 | 27.9 | 47.5 | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
|
|
|
+| YOLOv1 | ResNet-18 | 1xb16 | 640 | | | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
|
|
|
|
|
|
- For training, we train redesigned YOLOv1 with 150 epochs on COCO.
|
|
|
- For data augmentation, we only use the large scale jitter (LSJ), no Mosaic or Mixup augmentation.
|