|
|
@@ -0,0 +1,320 @@
|
|
|
+import numpy as np
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+from typing import List
|
|
|
+
|
|
|
+
|
|
|
+# --------------------- Basic modules ---------------------
|
|
|
+def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
|
|
|
+ conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
|
|
|
+
|
|
|
+ return conv
|
|
|
+
|
|
|
+def get_activation(act_type=None):
|
|
|
+ if act_type == 'relu':
|
|
|
+ return nn.ReLU(inplace=True)
|
|
|
+ elif act_type == 'lrelu':
|
|
|
+ return nn.LeakyReLU(0.1, inplace=True)
|
|
|
+ elif act_type == 'mish':
|
|
|
+ return nn.Mish(inplace=True)
|
|
|
+ elif act_type == 'silu':
|
|
|
+ return nn.SiLU(inplace=True)
|
|
|
+ elif act_type is None:
|
|
|
+ return nn.Identity()
|
|
|
+ else:
|
|
|
+ raise NotImplementedError
|
|
|
+
|
|
|
+def get_norm(norm_type, dim):
|
|
|
+ if norm_type == 'BN':
|
|
|
+ return nn.BatchNorm2d(dim)
|
|
|
+ elif norm_type == 'GN':
|
|
|
+ return nn.GroupNorm(num_groups=32, num_channels=dim)
|
|
|
+ elif norm_type is None:
|
|
|
+ return nn.Identity()
|
|
|
+ else:
|
|
|
+ raise NotImplementedError
|
|
|
+
|
|
|
+class BasicConv(nn.Module):
|
|
|
+ def __init__(self,
|
|
|
+ in_dim, # in channels
|
|
|
+ out_dim, # out channels
|
|
|
+ kernel_size=1, # kernel size
|
|
|
+ padding=0, # padding
|
|
|
+ stride=1, # padding
|
|
|
+ dilation=1, # dilation
|
|
|
+ group=1, # group
|
|
|
+ act_type :str = 'lrelu', # activation
|
|
|
+ norm_type :str = 'BN', # normalization
|
|
|
+ depthwise :bool = False
|
|
|
+ ):
|
|
|
+ super(BasicConv, self).__init__()
|
|
|
+ self.depthwise = depthwise
|
|
|
+ if not depthwise:
|
|
|
+ self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=group)
|
|
|
+ self.norm = get_norm(norm_type, out_dim)
|
|
|
+ else:
|
|
|
+ self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=in_dim)
|
|
|
+ self.norm1 = get_norm(norm_type, in_dim)
|
|
|
+ self.conv2 = get_conv2d(in_dim, out_dim, k=1, p=0, s=1, d=1, g=1)
|
|
|
+ self.norm2 = get_norm(norm_type, out_dim)
|
|
|
+ self.act = get_activation(act_type)
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ if not self.depthwise:
|
|
|
+ return self.act(self.norm(self.conv(x)))
|
|
|
+ else:
|
|
|
+ # Depthwise conv
|
|
|
+ x = self.norm1(self.conv1(x))
|
|
|
+ # Pointwise conv
|
|
|
+ x = self.norm2(self.conv2(x))
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+# --------------------- GELAN modules (from yolov9) ---------------------
|
|
|
+class ADown(nn.Module):
|
|
|
+ def __init__(self, in_dim, out_dim, act_type="silu", norm_type="BN", depthwise=False, use_pooling=True):
|
|
|
+ super().__init__()
|
|
|
+ inter_dim = out_dim // 2
|
|
|
+ self.use_pooling = use_pooling
|
|
|
+ if use_pooling:
|
|
|
+ self.conv_layer_1 = BasicConv(in_dim // 2, inter_dim,
|
|
|
+ kernel_size=3, padding=1, stride=2,
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
+ self.conv_layer_2 = BasicConv(in_dim // 2, inter_dim, kernel_size=1,
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
+ else:
|
|
|
+ self.conv_layer = BasicConv(in_dim, out_dim, kernel_size=3, padding=1, stride=2,
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
+ def forward(self, x):
|
|
|
+ if self.use_pooling:
|
|
|
+ x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
|
|
|
+ x1,x2 = x.chunk(2, 1)
|
|
|
+ x1 = self.conv_layer_1(x1)
|
|
|
+ x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
|
|
|
+ x2 = self.conv_layer_2(x2)
|
|
|
+
|
|
|
+ return torch.cat((x1, x2), 1)
|
|
|
+ else:
|
|
|
+ return self.conv_layer(x)
|
|
|
+
|
|
|
+class RepConvN(nn.Module):
|
|
|
+ """RepConv is a basic rep-style block, including training and deploy status
|
|
|
+ This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
|
|
|
+ """
|
|
|
+ def __init__(self, in_dim, out_dim, k=3, s=1, p=1, g=1, act_type='silu', norm_type='BN', depthwise=False):
|
|
|
+ super().__init__()
|
|
|
+ assert k == 3 and p == 1
|
|
|
+ self.g = g
|
|
|
+ self.in_dim = in_dim
|
|
|
+ self.out_dim = out_dim
|
|
|
+ self.act = get_activation(act_type)
|
|
|
+
|
|
|
+ self.bn = None
|
|
|
+ self.conv1 = BasicConv(in_dim, out_dim,
|
|
|
+ kernel_size=k, padding=p, stride=s, group=g,
|
|
|
+ act_type=None, norm_type=norm_type, depthwise=depthwise)
|
|
|
+ self.conv2 = BasicConv(in_dim, out_dim,
|
|
|
+ kernel_size=1, padding=(p - k // 2), stride=s, group=g,
|
|
|
+ act_type=None, norm_type=norm_type, depthwise=depthwise)
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ """Forward process"""
|
|
|
+ if hasattr(self, 'conv'):
|
|
|
+ return self.forward_fuse(x)
|
|
|
+ else:
|
|
|
+ id_out = 0 if self.bn is None else self.bn(x)
|
|
|
+ return self.act(self.conv1(x) + self.conv2(x) + id_out)
|
|
|
+
|
|
|
+ def forward_fuse(self, x):
|
|
|
+ """Forward process"""
|
|
|
+ return self.act(self.conv(x))
|
|
|
+
|
|
|
+ def get_equivalent_kernel_bias(self):
|
|
|
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
|
|
|
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
|
|
|
+ kernelid, biasid = self._fuse_bn_tensor(self.bn)
|
|
|
+ return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
|
|
|
+
|
|
|
+ def _avg_to_3x3_tensor(self, avgp):
|
|
|
+ channels = self.in_dim
|
|
|
+ groups = self.g
|
|
|
+ kernel_size = avgp.kernel_size
|
|
|
+ input_dim = channels // groups
|
|
|
+ k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
|
|
|
+ k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
|
|
|
+ return k
|
|
|
+
|
|
|
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
|
|
|
+ if kernel1x1 is None:
|
|
|
+ return 0
|
|
|
+ else:
|
|
|
+ return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
|
|
|
+
|
|
|
+ def _fuse_bn_tensor(self, branch):
|
|
|
+ if branch is None:
|
|
|
+ return 0, 0
|
|
|
+ if isinstance(branch, BasicConv):
|
|
|
+ kernel = branch.conv.weight
|
|
|
+ running_mean = branch.norm.running_mean
|
|
|
+ running_var = branch.norm.running_var
|
|
|
+ gamma = branch.norm.weight
|
|
|
+ beta = branch.norm.bias
|
|
|
+ eps = branch.norm.eps
|
|
|
+ elif isinstance(branch, nn.BatchNorm2d):
|
|
|
+ if not hasattr(self, 'id_tensor'):
|
|
|
+ input_dim = self.in_dim // self.g
|
|
|
+ kernel_value = np.zeros((self.in_dim, input_dim, 3, 3), dtype=np.float32)
|
|
|
+ for i in range(self.in_dim):
|
|
|
+ kernel_value[i, i % input_dim, 1, 1] = 1
|
|
|
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
|
|
|
+ kernel = self.id_tensor
|
|
|
+ running_mean = branch.running_mean
|
|
|
+ running_var = branch.running_var
|
|
|
+ gamma = branch.weight
|
|
|
+ beta = branch.bias
|
|
|
+ eps = branch.eps
|
|
|
+ std = (running_var + eps).sqrt()
|
|
|
+ t = (gamma / std).reshape(-1, 1, 1, 1)
|
|
|
+ return kernel * t, beta - running_mean * gamma / std
|
|
|
+
|
|
|
+ def fuse_convs(self):
|
|
|
+ if hasattr(self, 'conv'):
|
|
|
+ return
|
|
|
+ kernel, bias = self.get_equivalent_kernel_bias()
|
|
|
+ self.conv = nn.Conv2d(in_channels = self.conv1.conv.in_channels,
|
|
|
+ out_channels = self.conv1.conv.out_channels,
|
|
|
+ kernel_size = self.conv1.conv.kernel_size,
|
|
|
+ stride = self.conv1.conv.stride,
|
|
|
+ padding = self.conv1.conv.padding,
|
|
|
+ dilation = self.conv1.conv.dilation,
|
|
|
+ groups = self.conv1.conv.groups,
|
|
|
+ bias = True).requires_grad_(False)
|
|
|
+ self.conv.weight.data = kernel
|
|
|
+ self.conv.bias.data = bias
|
|
|
+ for para in self.parameters():
|
|
|
+ para.detach_()
|
|
|
+ self.__delattr__('conv1')
|
|
|
+ self.__delattr__('conv2')
|
|
|
+ if hasattr(self, 'nm'):
|
|
|
+ self.__delattr__('nm')
|
|
|
+ if hasattr(self, 'bn'):
|
|
|
+ self.__delattr__('bn')
|
|
|
+ if hasattr(self, 'id_tensor'):
|
|
|
+ self.__delattr__('id_tensor')
|
|
|
+
|
|
|
+class RepNBottleneck(nn.Module):
|
|
|
+ def __init__(self,
|
|
|
+ in_dim,
|
|
|
+ out_dim,
|
|
|
+ shortcut=True,
|
|
|
+ kernel_size=(3, 3),
|
|
|
+ expansion=0.5,
|
|
|
+ act_type='silu',
|
|
|
+ norm_type='BN',
|
|
|
+ depthwise=False
|
|
|
+ ):
|
|
|
+ super().__init__()
|
|
|
+ inter_dim = round(out_dim * expansion)
|
|
|
+ self.conv_layer_1 = RepConvN(in_dim, inter_dim, kernel_size[0], p=kernel_size[0]//2, s=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ self.conv_layer_2 = BasicConv(inter_dim, out_dim, kernel_size[1], padding=kernel_size[1]//2, stride=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ self.add = shortcut and in_dim == out_dim
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ h = self.conv_layer_2(self.conv_layer_1(x))
|
|
|
+ return x + h if self.add else h
|
|
|
+
|
|
|
+class RepNCSP(nn.Module):
|
|
|
+ def __init__(self,
|
|
|
+ in_dim,
|
|
|
+ out_dim,
|
|
|
+ num_blocks=1,
|
|
|
+ shortcut=True,
|
|
|
+ expansion=0.5,
|
|
|
+ act_type='silu',
|
|
|
+ norm_type='BN',
|
|
|
+ depthwise=False
|
|
|
+ ):
|
|
|
+ super().__init__()
|
|
|
+ inter_dim = int(out_dim * expansion)
|
|
|
+ self.conv_layer_1 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ self.conv_layer_2 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ self.conv_layer_3 = BasicConv(2 * inter_dim, out_dim, kernel_size=1)
|
|
|
+ self.module = nn.Sequential(*(RepNBottleneck(inter_dim,
|
|
|
+ inter_dim,
|
|
|
+ kernel_size = [3, 3],
|
|
|
+ shortcut = shortcut,
|
|
|
+ expansion = 1.0,
|
|
|
+ act_type = act_type,
|
|
|
+ norm_type = norm_type,
|
|
|
+ depthwise = depthwise)
|
|
|
+ for _ in range(num_blocks)))
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ x1 = self.conv_layer_1(x)
|
|
|
+ x2 = self.module(self.conv_layer_2(x))
|
|
|
+
|
|
|
+ return self.conv_layer_3(torch.cat([x1, x2], dim=1))
|
|
|
+
|
|
|
+class RepGElanLayer(nn.Module):
|
|
|
+ """YOLOv9's GELAN module"""
|
|
|
+ def __init__(self,
|
|
|
+ in_dim :int,
|
|
|
+ inter_dims :List,
|
|
|
+ out_dim :int,
|
|
|
+ num_blocks :int = 1,
|
|
|
+ shortcut :bool = False,
|
|
|
+ act_type :str = 'silu',
|
|
|
+ norm_type :str = 'BN',
|
|
|
+ depthwise :bool = False,
|
|
|
+ ) -> None:
|
|
|
+ super(RepGElanLayer, self).__init__()
|
|
|
+ # ----------- Basic parameters -----------
|
|
|
+ self.in_dim = in_dim
|
|
|
+ self.inter_dims = inter_dims
|
|
|
+ self.out_dim = out_dim
|
|
|
+
|
|
|
+ # ----------- Network parameters -----------
|
|
|
+ self.conv_layer_1 = BasicConv(in_dim, inter_dims[0], kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ self.elan_module_1 = nn.Sequential(
|
|
|
+ RepNCSP(inter_dims[0]//2,
|
|
|
+ inter_dims[1],
|
|
|
+ num_blocks = num_blocks,
|
|
|
+ shortcut = shortcut,
|
|
|
+ expansion = 0.5,
|
|
|
+ act_type = act_type,
|
|
|
+ norm_type = norm_type,
|
|
|
+ depthwise = depthwise),
|
|
|
+ BasicConv(inter_dims[1], inter_dims[1],
|
|
|
+ kernel_size=3, padding=1,
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
+ )
|
|
|
+ self.elan_module_2 = nn.Sequential(
|
|
|
+ RepNCSP(inter_dims[1],
|
|
|
+ inter_dims[1],
|
|
|
+ num_blocks = num_blocks,
|
|
|
+ shortcut = shortcut,
|
|
|
+ expansion = 0.5,
|
|
|
+ act_type = act_type,
|
|
|
+ norm_type = norm_type,
|
|
|
+ depthwise = depthwise),
|
|
|
+ BasicConv(inter_dims[1], inter_dims[1],
|
|
|
+ kernel_size=3, padding=1,
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
+ )
|
|
|
+ self.conv_layer_2 = BasicConv(inter_dims[0] + 2*self.inter_dims[1], out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
+
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ # Input proj
|
|
|
+ x1, x2 = torch.chunk(self.conv_layer_1(x), 2, dim=1)
|
|
|
+ out = list([x1, x2])
|
|
|
+
|
|
|
+ # ELAN module
|
|
|
+ out.append(self.elan_module_1(out[-1]))
|
|
|
+ out.append(self.elan_module_2(out[-1]))
|
|
|
+
|
|
|
+ # Output proj
|
|
|
+ out = self.conv_layer_2(torch.cat(out, dim=1))
|
|
|
+
|
|
|
+ return out
|
|
|
+
|