|
@@ -1,151 +0,0 @@
|
|
|
-# yolo Config
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-def build_yolov7af_config(args):
|
|
|
|
|
- if args.model == 'yolov7_af_t':
|
|
|
|
|
- return Yolov7AFTConfig()
|
|
|
|
|
- elif args.model == 'yolov7_af_l':
|
|
|
|
|
- return Yolov7AFLConfig()
|
|
|
|
|
- else:
|
|
|
|
|
- raise NotImplementedError("No config for model: {}".format(args.model))
|
|
|
|
|
-
|
|
|
|
|
-# YOLOv7AF-Base config
|
|
|
|
|
-class Yolov7AFBaseConfig(object):
|
|
|
|
|
- def __init__(self) -> None:
|
|
|
|
|
- # ---------------- Model config ----------------
|
|
|
|
|
- self.width = 1.0
|
|
|
|
|
- self.out_stride = [8, 16, 32]
|
|
|
|
|
- self.max_stride = 32
|
|
|
|
|
- self.num_levels = 3
|
|
|
|
|
- self.scale = "b"
|
|
|
|
|
- ## Backbone
|
|
|
|
|
- self.bk_act = 'silu'
|
|
|
|
|
- self.bk_norm = 'BN'
|
|
|
|
|
- self.bk_depthwise = False
|
|
|
|
|
- self.use_pretrained = True
|
|
|
|
|
- ## Neck
|
|
|
|
|
- self.neck_act = 'silu'
|
|
|
|
|
- self.neck_norm = 'BN'
|
|
|
|
|
- self.neck_depthwise = False
|
|
|
|
|
- self.neck_expand_ratio = 0.5
|
|
|
|
|
- self.spp_pooling_size = 5
|
|
|
|
|
- ## FPN
|
|
|
|
|
- self.fpn_act = 'silu'
|
|
|
|
|
- self.fpn_norm = 'BN'
|
|
|
|
|
- self.fpn_depthwise = False
|
|
|
|
|
- self.fpn_expansions = [0.5, 0.5]
|
|
|
|
|
- self.fpn_block_bw = 4
|
|
|
|
|
- self.fpn_block_dw = 1
|
|
|
|
|
- ## Head
|
|
|
|
|
- self.head_act = 'silu'
|
|
|
|
|
- self.head_norm = 'BN'
|
|
|
|
|
- self.head_depthwise = False
|
|
|
|
|
- self.head_dim = 256
|
|
|
|
|
- self.num_cls_head = 2
|
|
|
|
|
- self.num_reg_head = 2
|
|
|
|
|
-
|
|
|
|
|
- # ---------------- Post-process config ----------------
|
|
|
|
|
- ## Post process
|
|
|
|
|
- self.val_topk = 1000
|
|
|
|
|
- self.val_conf_thresh = 0.001
|
|
|
|
|
- self.val_nms_thresh = 0.7
|
|
|
|
|
- self.test_topk = 100
|
|
|
|
|
- self.test_conf_thresh = 0.4
|
|
|
|
|
- self.test_nms_thresh = 0.5
|
|
|
|
|
-
|
|
|
|
|
- # ---------------- Assignment config ----------------
|
|
|
|
|
- ## Matcher
|
|
|
|
|
- self.ota_center_sampling_radius = 2.5
|
|
|
|
|
- self.ota_topk_candidate = 10
|
|
|
|
|
- ## Loss weight
|
|
|
|
|
- self.loss_obj = 1.0
|
|
|
|
|
- self.loss_cls = 1.0
|
|
|
|
|
- self.loss_box = 5.0
|
|
|
|
|
-
|
|
|
|
|
- # ---------------- ModelEMA config ----------------
|
|
|
|
|
- self.use_ema = True
|
|
|
|
|
- self.ema_decay = 0.9998
|
|
|
|
|
- self.ema_tau = 2000
|
|
|
|
|
-
|
|
|
|
|
- # ---------------- Optimizer config ----------------
|
|
|
|
|
- self.trainer = 'yolo'
|
|
|
|
|
- self.optimizer = 'adamw'
|
|
|
|
|
- self.per_image_lr = 0.001 / 64
|
|
|
|
|
- self.base_lr = None # base_lr = per_image_lr * batch_size
|
|
|
|
|
- self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
|
|
|
|
|
- self.momentum = 0.9
|
|
|
|
|
- self.weight_decay = 0.05
|
|
|
|
|
- self.clip_max_norm = 35.0
|
|
|
|
|
- self.warmup_bias_lr = 0.1
|
|
|
|
|
- self.warmup_momentum = 0.8
|
|
|
|
|
-
|
|
|
|
|
- # ---------------- Lr Scheduler config ----------------
|
|
|
|
|
- self.warmup_epoch = 3
|
|
|
|
|
- self.lr_scheduler = "cosine"
|
|
|
|
|
- self.max_epoch = 300
|
|
|
|
|
- self.eval_epoch = 10
|
|
|
|
|
- self.no_aug_epoch = 20
|
|
|
|
|
-
|
|
|
|
|
- # ---------------- Data process config ----------------
|
|
|
|
|
- self.aug_type = 'yolo'
|
|
|
|
|
- self.box_format = 'xyxy'
|
|
|
|
|
- self.normalize_coords = False
|
|
|
|
|
- self.mosaic_prob = 1.0
|
|
|
|
|
- self.mixup_prob = 0.0
|
|
|
|
|
- self.copy_paste = 0.0 # approximated by the YOLOX's mixup
|
|
|
|
|
- self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
|
|
|
|
|
- ## Pixel mean & std
|
|
|
|
|
- self.pixel_mean = [0., 0., 0.]
|
|
|
|
|
- self.pixel_std = [255., 255., 255.]
|
|
|
|
|
- ## Transforms
|
|
|
|
|
- self.train_img_size = 640
|
|
|
|
|
- self.test_img_size = 640
|
|
|
|
|
- self.use_ablu = True
|
|
|
|
|
- self.affine_params = {
|
|
|
|
|
- 'degrees': 0.0,
|
|
|
|
|
- 'translate': 0.2,
|
|
|
|
|
- 'scale': [0.1, 2.0],
|
|
|
|
|
- 'shear': 0.0,
|
|
|
|
|
- 'perspective': 0.0,
|
|
|
|
|
- 'hsv_h': 0.015,
|
|
|
|
|
- 'hsv_s': 0.7,
|
|
|
|
|
- 'hsv_v': 0.4,
|
|
|
|
|
- }
|
|
|
|
|
-
|
|
|
|
|
- def print_config(self):
|
|
|
|
|
- config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
|
|
|
|
|
- for k, v in config_dict.items():
|
|
|
|
|
- print("{} : {}".format(k, v))
|
|
|
|
|
-
|
|
|
|
|
-# YOLOv7-S
|
|
|
|
|
-class Yolov7AFTConfig(Yolov7AFBaseConfig):
|
|
|
|
|
- def __init__(self) -> None:
|
|
|
|
|
- super().__init__()
|
|
|
|
|
- # ---------------- Model config ----------------
|
|
|
|
|
- self.width = 0.50
|
|
|
|
|
- self.scale = "t"
|
|
|
|
|
- self.use_pretrained = True
|
|
|
|
|
- self.fpn_expansions = [0.5, 0.5]
|
|
|
|
|
- self.fpn_block_bw = 2
|
|
|
|
|
- self.fpn_block_dw = 1
|
|
|
|
|
-
|
|
|
|
|
- # ---------------- Data process config ----------------
|
|
|
|
|
- self.mosaic_prob = 1.0
|
|
|
|
|
- self.mixup_prob = 0.0
|
|
|
|
|
- self.copy_paste = 0.5
|
|
|
|
|
-
|
|
|
|
|
-# YOLOv7-L
|
|
|
|
|
-class Yolov7AFLConfig(Yolov7AFBaseConfig):
|
|
|
|
|
- def __init__(self) -> None:
|
|
|
|
|
- super().__init__()
|
|
|
|
|
- # ---------------- Model config ----------------
|
|
|
|
|
- self.width = 1.0
|
|
|
|
|
- self.scale = "l"
|
|
|
|
|
- self.fpn_expansions = [0.5, 0.5]
|
|
|
|
|
- self.fpn_block_bw = 4
|
|
|
|
|
- self.fpn_block_dw = 1
|
|
|
|
|
-
|
|
|
|
|
- # ---------------- Data process config ----------------
|
|
|
|
|
- self.mosaic_prob = 1.0
|
|
|
|
|
- self.mixup_prob = 0.1
|
|
|
|
|
- self.copy_paste = 0.5
|
|
|