|
@@ -0,0 +1,190 @@
|
|
|
|
|
+import torch
|
|
|
|
|
+import torch.nn as nn
|
|
|
|
|
+from typing import List
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# --------------------- Basic modules ---------------------
|
|
|
|
|
+def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
|
|
|
|
|
+ conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
|
|
|
|
|
+
|
|
|
|
|
+ return conv
|
|
|
|
|
+
|
|
|
|
|
+def get_activation(act_type=None):
|
|
|
|
|
+ if act_type == 'relu':
|
|
|
|
|
+ return nn.ReLU(inplace=True)
|
|
|
|
|
+ elif act_type == 'lrelu':
|
|
|
|
|
+ return nn.LeakyReLU(0.1, inplace=True)
|
|
|
|
|
+ elif act_type == 'mish':
|
|
|
|
|
+ return nn.Mish(inplace=True)
|
|
|
|
|
+ elif act_type == 'silu':
|
|
|
|
|
+ return nn.SiLU(inplace=True)
|
|
|
|
|
+ elif act_type is None:
|
|
|
|
|
+ return nn.Identity()
|
|
|
|
|
+ else:
|
|
|
|
|
+ raise NotImplementedError
|
|
|
|
|
+
|
|
|
|
|
+def get_norm(norm_type, dim):
|
|
|
|
|
+ if norm_type == 'BN':
|
|
|
|
|
+ return nn.BatchNorm2d(dim)
|
|
|
|
|
+ elif norm_type == 'GN':
|
|
|
|
|
+ return nn.GroupNorm(num_groups=32, num_channels=dim)
|
|
|
|
|
+ elif norm_type is None:
|
|
|
|
|
+ return nn.Identity()
|
|
|
|
|
+ else:
|
|
|
|
|
+ raise NotImplementedError
|
|
|
|
|
+
|
|
|
|
|
+class BasicConv(nn.Module):
|
|
|
|
|
+ def __init__(self,
|
|
|
|
|
+ in_dim, # in channels
|
|
|
|
|
+ out_dim, # out channels
|
|
|
|
|
+ kernel_size=1, # kernel size
|
|
|
|
|
+ padding=0, # padding
|
|
|
|
|
+ stride=1, # padding
|
|
|
|
|
+ dilation=1, # dilation
|
|
|
|
|
+ act_type :str = 'lrelu', # activation
|
|
|
|
|
+ norm_type :str = 'BN', # normalization
|
|
|
|
|
+ depthwise :bool = False
|
|
|
|
|
+ ):
|
|
|
|
|
+ super(BasicConv, self).__init__()
|
|
|
|
|
+ self.depthwise = depthwise
|
|
|
|
|
+ if not depthwise:
|
|
|
|
|
+ self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=1)
|
|
|
|
|
+ self.norm = get_norm(norm_type, out_dim)
|
|
|
|
|
+ else:
|
|
|
|
|
+ self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=in_dim)
|
|
|
|
|
+ self.norm1 = get_norm(norm_type, in_dim)
|
|
|
|
|
+ self.conv2 = get_conv2d(in_dim, out_dim, k=1, p=0, s=1, d=1, g=1)
|
|
|
|
|
+ self.norm2 = get_norm(norm_type, out_dim)
|
|
|
|
|
+ self.act = get_activation(act_type)
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x):
|
|
|
|
|
+ if not self.depthwise:
|
|
|
|
|
+ return self.act(self.norm(self.conv(x)))
|
|
|
|
|
+ else:
|
|
|
|
|
+ # Depthwise conv
|
|
|
|
|
+ x = self.norm1(self.conv1(x))
|
|
|
|
|
+ # Pointwise conv
|
|
|
|
|
+ x = self.norm2(self.conv2(x))
|
|
|
|
|
+ return x
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# ---------------------------- Basic Modules ----------------------------
|
|
|
|
|
+class MDown(nn.Module):
|
|
|
|
|
+ def __init__(self,
|
|
|
|
|
+ in_dim :int,
|
|
|
|
|
+ out_dim :int,
|
|
|
|
|
+ act_type :str = 'silu',
|
|
|
|
|
+ norm_type :str = 'BN',
|
|
|
|
|
+ depthwise :bool = False,
|
|
|
|
|
+ ) -> None:
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ inter_dim = out_dim // 2
|
|
|
|
|
+ self.downsample_1 = nn.Sequential(
|
|
|
|
|
+ nn.MaxPool2d((2, 2), stride=2),
|
|
|
|
|
+ BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
|
|
+ )
|
|
|
|
|
+ self.downsample_2 = nn.Sequential(
|
|
|
|
|
+ BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type),
|
|
|
|
|
+ BasicConv(inter_dim, inter_dim,
|
|
|
|
|
+ kernel_size=3, padding=1, stride=2,
|
|
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
|
|
+ )
|
|
|
|
|
+ if in_dim == out_dim:
|
|
|
|
|
+ self.output_proj = nn.Identity()
|
|
|
|
|
+ else:
|
|
|
|
|
+ self.output_proj = BasicConv(inter_dim * 2, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x):
|
|
|
|
|
+ x1 = self.downsample_1(x)
|
|
|
|
|
+ x2 = self.downsample_2(x)
|
|
|
|
|
+
|
|
|
|
|
+ out = self.output_proj(torch.cat([x1, x2], dim=1))
|
|
|
|
|
+
|
|
|
|
|
+ return out
|
|
|
|
|
+
|
|
|
|
|
+class ELANLayer(nn.Module):
|
|
|
|
|
+ def __init__(self,
|
|
|
|
|
+ in_dim,
|
|
|
|
|
+ out_dim,
|
|
|
|
|
+ expansion :float = 0.5,
|
|
|
|
|
+ num_blocks :int = 1,
|
|
|
|
|
+ act_type :str = 'silu',
|
|
|
|
|
+ norm_type :str = 'BN',
|
|
|
|
|
+ depthwise :bool = False,
|
|
|
|
|
+ ) -> None:
|
|
|
|
|
+ super(ELANLayer, self).__init__()
|
|
|
|
|
+ self.inter_dim = round(in_dim * expansion)
|
|
|
|
|
+ self.conv_layer_1 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
|
|
+ self.conv_layer_2 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
|
|
+ self.conv_layer_3 = BasicConv(self.inter_dim * 4, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
|
|
+ self.elan_layer_1 = nn.Sequential(*[BasicConv(self.inter_dim, self.inter_dim,
|
|
|
|
|
+ kernel_size=3, padding=1,
|
|
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
|
|
+ for _ in range(num_blocks)])
|
|
|
|
|
+ self.elan_layer_2 = nn.Sequential(*[BasicConv(self.inter_dim, self.inter_dim,
|
|
|
|
|
+ kernel_size=3, padding=1,
|
|
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
|
|
+ for _ in range(num_blocks)])
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x):
|
|
|
|
|
+ # Input proj
|
|
|
|
|
+ x1 = self.conv_layer_1(x)
|
|
|
|
|
+ x2 = self.conv_layer_2(x)
|
|
|
|
|
+ x3 = self.elan_layer_1(x2)
|
|
|
|
|
+ x4 = self.elan_layer_2(x3)
|
|
|
|
|
+
|
|
|
|
|
+ out = self.conv_layer_3(torch.cat([x1, x2, x3, x4], dim=1))
|
|
|
|
|
+
|
|
|
|
|
+ return out
|
|
|
|
|
+
|
|
|
|
|
+## PaFPN's ELAN-Block proposed by YOLOv7
|
|
|
|
|
+class ELANLayerFPN(nn.Module):
|
|
|
|
|
+ def __init__(self,
|
|
|
|
|
+ in_dim,
|
|
|
|
|
+ out_dim,
|
|
|
|
|
+ expansions :List = [0.5, 0.5],
|
|
|
|
|
+ branch_width :int = 4,
|
|
|
|
|
+ branch_depth :int = 1,
|
|
|
|
|
+ act_type :str = 'silu',
|
|
|
|
|
+ norm_type :str = 'BN',
|
|
|
|
|
+ depthwise=False):
|
|
|
|
|
+ super(ELANLayerFPN, self).__init__()
|
|
|
|
|
+ # Basic parameters
|
|
|
|
|
+ inter_dim = round(in_dim * expansions[0])
|
|
|
|
|
+ inter_dim2 = round(inter_dim * expansions[1])
|
|
|
|
|
+ # Network structure
|
|
|
|
|
+ self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
|
|
+ self.cv2 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
|
|
+ self.cv3 = nn.ModuleList()
|
|
|
|
|
+ for idx in range(round(branch_width)):
|
|
|
|
|
+ if idx == 0:
|
|
|
|
|
+ cvs = [BasicConv(inter_dim, inter_dim2,
|
|
|
|
|
+ kernel_size=3, padding=1,
|
|
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
|
|
|
|
|
+ else:
|
|
|
|
|
+ cvs = [BasicConv(inter_dim2, inter_dim2,
|
|
|
|
|
+ kernel_size=3, padding=1,
|
|
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
|
|
|
|
|
+ # deeper
|
|
|
|
|
+ if round(branch_depth) > 1:
|
|
|
|
|
+ for _ in range(1, round(branch_depth)):
|
|
|
|
|
+ cvs.append(BasicConv(inter_dim2, inter_dim2, kernel_size=3, padding=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise))
|
|
|
|
|
+ self.cv3.append(nn.Sequential(*cvs))
|
|
|
|
|
+ else:
|
|
|
|
|
+ self.cv3.append(cvs[0])
|
|
|
|
|
+
|
|
|
|
|
+ self.output_proj = BasicConv(inter_dim*2+inter_dim2*len(self.cv3), out_dim,
|
|
|
|
|
+ kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x):
|
|
|
|
|
+ x1 = self.cv1(x)
|
|
|
|
|
+ x2 = self.cv2(x)
|
|
|
|
|
+ inter_outs = [x1, x2]
|
|
|
|
|
+ for m in self.cv3:
|
|
|
|
|
+ y1 = inter_outs[-1]
|
|
|
|
|
+ y2 = m(y1)
|
|
|
|
|
+ inter_outs.append(y2)
|
|
|
|
|
+ out = self.output_proj(torch.cat(inter_outs, dim=1))
|
|
|
|
|
+
|
|
|
|
|
+ return out
|