|
|
@@ -0,0 +1,185 @@
|
|
|
+# ---------------------------------------------------------------------
|
|
|
+# Copyright (c) Megvii Inc. All rights reserved.
|
|
|
+# ---------------------------------------------------------------------
|
|
|
+
|
|
|
+
|
|
|
+import torch
|
|
|
+import torch.nn.functional as F
|
|
|
+from utils.box_ops import *
|
|
|
+
|
|
|
+
|
|
|
+class YoloxMatcher(object):
|
|
|
+ """
|
|
|
+ This code referenced to https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/models/yolo_head.py
|
|
|
+ """
|
|
|
+ def __init__(self, num_classes, center_sampling_radius, topk_candidate ):
|
|
|
+ self.num_classes = num_classes
|
|
|
+ self.center_sampling_radius = center_sampling_radius
|
|
|
+ self.topk_candidate = topk_candidate
|
|
|
+
|
|
|
+
|
|
|
+ @torch.no_grad()
|
|
|
+ def __call__(self,
|
|
|
+ fpn_strides,
|
|
|
+ anchors,
|
|
|
+ pred_obj,
|
|
|
+ pred_cls,
|
|
|
+ pred_box,
|
|
|
+ tgt_labels,
|
|
|
+ tgt_bboxes):
|
|
|
+ # [M,]
|
|
|
+ strides_tensor = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
|
|
|
+ for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1)
|
|
|
+ # List[F, M, 2] -> [M, 2]
|
|
|
+ anchors = torch.cat(anchors, dim=0)
|
|
|
+ num_anchor = anchors.shape[0]
|
|
|
+ num_gt = len(tgt_labels)
|
|
|
+
|
|
|
+ # ----------------------- Find inside points -----------------------
|
|
|
+ fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
|
|
|
+ tgt_bboxes, anchors, strides_tensor, num_anchor, num_gt)
|
|
|
+ obj_preds = pred_obj[fg_mask].float() # [Mp, 1]
|
|
|
+ cls_preds = pred_cls[fg_mask].float() # [Mp, C]
|
|
|
+ box_preds = pred_box[fg_mask].float() # [Mp, 4]
|
|
|
+
|
|
|
+ # ----------------------- Reg cost -----------------------
|
|
|
+ pair_wise_ious, _ = box_iou(tgt_bboxes, box_preds) # [N, Mp]
|
|
|
+ reg_cost = -torch.log(pair_wise_ious + 1e-8) # [N, Mp]
|
|
|
+
|
|
|
+ # ----------------------- Cls cost -----------------------
|
|
|
+ with torch.cuda.amp.autocast(enabled=False):
|
|
|
+ # [Mp, C]
|
|
|
+ score_preds = torch.sqrt(obj_preds.sigmoid_()* cls_preds.sigmoid_())
|
|
|
+ # [N, Mp, C]
|
|
|
+ score_preds = score_preds.unsqueeze(0).repeat(num_gt, 1, 1)
|
|
|
+ # prepare cls_target
|
|
|
+ cls_targets = F.one_hot(tgt_labels.long(), self.num_classes).float()
|
|
|
+ cls_targets = cls_targets.unsqueeze(1).repeat(1, score_preds.size(1), 1)
|
|
|
+ # [N, Mp]
|
|
|
+ cls_cost = F.binary_cross_entropy(score_preds, cls_targets, reduction="none").sum(-1)
|
|
|
+ del score_preds
|
|
|
+
|
|
|
+ #----------------------- Dynamic K-Matching -----------------------
|
|
|
+ cost_matrix = (
|
|
|
+ cls_cost
|
|
|
+ + 3.0 * reg_cost
|
|
|
+ + 100000.0 * (~is_in_boxes_and_center)
|
|
|
+ ) # [N, Mp]
|
|
|
+
|
|
|
+ (
|
|
|
+ assigned_labels, # [num_fg,]
|
|
|
+ assigned_ious, # [num_fg,]
|
|
|
+ assigned_indexs, # [num_fg,]
|
|
|
+ ) = self.dynamic_k_matching(
|
|
|
+ cost_matrix,
|
|
|
+ pair_wise_ious,
|
|
|
+ tgt_labels,
|
|
|
+ num_gt,
|
|
|
+ fg_mask
|
|
|
+ )
|
|
|
+ del cls_cost, cost_matrix, pair_wise_ious, reg_cost
|
|
|
+
|
|
|
+ return fg_mask, assigned_labels, assigned_ious, assigned_indexs
|
|
|
+
|
|
|
+ def get_in_boxes_info(
|
|
|
+ self,
|
|
|
+ gt_bboxes, # [N, 4]
|
|
|
+ anchors, # [M, 2]
|
|
|
+ strides, # [M,]
|
|
|
+ num_anchors, # M
|
|
|
+ num_gt, # N
|
|
|
+ ):
|
|
|
+ # anchor center
|
|
|
+ x_centers = anchors[:, 0]
|
|
|
+ y_centers = anchors[:, 1]
|
|
|
+
|
|
|
+ # [M,] -> [1, M] -> [N, M]
|
|
|
+ x_centers = x_centers.unsqueeze(0).repeat(num_gt, 1)
|
|
|
+ y_centers = y_centers.unsqueeze(0).repeat(num_gt, 1)
|
|
|
+
|
|
|
+ # [N,] -> [N, 1] -> [N, M]
|
|
|
+ gt_bboxes_l = gt_bboxes[:, 0].unsqueeze(1).repeat(1, num_anchors) # x1
|
|
|
+ gt_bboxes_t = gt_bboxes[:, 1].unsqueeze(1).repeat(1, num_anchors) # y1
|
|
|
+ gt_bboxes_r = gt_bboxes[:, 2].unsqueeze(1).repeat(1, num_anchors) # x2
|
|
|
+ gt_bboxes_b = gt_bboxes[:, 3].unsqueeze(1).repeat(1, num_anchors) # y2
|
|
|
+
|
|
|
+ b_l = x_centers - gt_bboxes_l
|
|
|
+ b_r = gt_bboxes_r - x_centers
|
|
|
+ b_t = y_centers - gt_bboxes_t
|
|
|
+ b_b = gt_bboxes_b - y_centers
|
|
|
+ bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2)
|
|
|
+
|
|
|
+ is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
|
|
|
+ is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
|
|
|
+ # in fixed center
|
|
|
+ center_radius = self.center_sampling_radius
|
|
|
+
|
|
|
+ # [N, 2]
|
|
|
+ gt_centers = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) * 0.5
|
|
|
+
|
|
|
+ # [1, M]
|
|
|
+ center_radius_ = center_radius * strides.unsqueeze(0)
|
|
|
+
|
|
|
+ gt_bboxes_l = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # x1
|
|
|
+ gt_bboxes_t = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # y1
|
|
|
+ gt_bboxes_r = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # x2
|
|
|
+ gt_bboxes_b = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # y2
|
|
|
+
|
|
|
+ c_l = x_centers - gt_bboxes_l
|
|
|
+ c_r = gt_bboxes_r - x_centers
|
|
|
+ c_t = y_centers - gt_bboxes_t
|
|
|
+ c_b = gt_bboxes_b - y_centers
|
|
|
+ center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2)
|
|
|
+ is_in_centers = center_deltas.min(dim=-1).values > 0.0
|
|
|
+ is_in_centers_all = is_in_centers.sum(dim=0) > 0
|
|
|
+
|
|
|
+ # in boxes and in centers
|
|
|
+ is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
|
|
|
+
|
|
|
+ is_in_boxes_and_center = (
|
|
|
+ is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
|
|
|
+ )
|
|
|
+ return is_in_boxes_anchor, is_in_boxes_and_center
|
|
|
+
|
|
|
+ def dynamic_k_matching(
|
|
|
+ self,
|
|
|
+ cost,
|
|
|
+ pair_wise_ious,
|
|
|
+ gt_classes,
|
|
|
+ num_gt,
|
|
|
+ fg_mask
|
|
|
+ ):
|
|
|
+ # Dynamic K
|
|
|
+ # ---------------------------------------------------------------
|
|
|
+ matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
|
|
|
+
|
|
|
+ ious_in_boxes_matrix = pair_wise_ious
|
|
|
+ n_candidate_k = min(self.topk_candidate, ious_in_boxes_matrix.size(1))
|
|
|
+ topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
|
|
|
+ dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
|
|
|
+ dynamic_ks = dynamic_ks.tolist()
|
|
|
+ for gt_idx in range(num_gt):
|
|
|
+ _, pos_idx = torch.topk(
|
|
|
+ cost[gt_idx], k=dynamic_ks[gt_idx], largest=False
|
|
|
+ )
|
|
|
+ matching_matrix[gt_idx][pos_idx] = 1
|
|
|
+
|
|
|
+ del topk_ious, dynamic_ks, pos_idx
|
|
|
+
|
|
|
+ anchor_matching_gt = matching_matrix.sum(0)
|
|
|
+ if (anchor_matching_gt > 1).sum() > 0:
|
|
|
+ _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
|
|
|
+ matching_matrix[:, anchor_matching_gt > 1] *= 0
|
|
|
+ matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1
|
|
|
+ fg_mask_inboxes = matching_matrix.sum(0) > 0
|
|
|
+
|
|
|
+ fg_mask[fg_mask.clone()] = fg_mask_inboxes
|
|
|
+
|
|
|
+ assigned_indexs = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
|
|
+ assigned_labels = gt_classes[assigned_indexs]
|
|
|
+
|
|
|
+ assigned_ious = (matching_matrix * pair_wise_ious).sum(0)[
|
|
|
+ fg_mask_inboxes
|
|
|
+ ]
|
|
|
+ return assigned_labels, assigned_ious, assigned_indexs
|
|
|
+
|