|
@@ -0,0 +1,160 @@
|
|
|
|
|
+# ------------------------------------------------------------------------------------------
|
|
|
|
|
+# This code referenced to https://github.com/open-mmlab/mmyolo/models/task_modules/assigners/batch_dsl_assigner.py
|
|
|
|
|
+# ------------------------------------------------------------------------------------------
|
|
|
|
|
+import torch
|
|
|
|
|
+import torch.nn as nn
|
|
|
|
|
+import torch.nn.functional as F
|
|
|
|
|
+from utils.box_ops import box_iou
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# -------------------------- Aligned SimOTA assigner --------------------------
|
|
|
|
|
+class AlignedSimOTA(object):
|
|
|
|
|
+ def __init__(self, num_classes, soft_center_radius=3.0, topk_candidates=13):
|
|
|
|
|
+ self.num_classes = num_classes
|
|
|
|
|
+ self.soft_center_radius = soft_center_radius
|
|
|
|
|
+ self.topk_candidates = topk_candidates
|
|
|
|
|
+
|
|
|
|
|
+ @torch.no_grad()
|
|
|
|
|
+ def __call__(self,
|
|
|
|
|
+ fpn_strides,
|
|
|
|
|
+ anchors,
|
|
|
|
|
+ pred_cls,
|
|
|
|
|
+ pred_box,
|
|
|
|
|
+ gt_labels,
|
|
|
|
|
+ gt_bboxes):
|
|
|
|
|
+ # [M,]
|
|
|
|
|
+ strides = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
|
|
|
|
|
+ for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1)
|
|
|
|
|
+ # List[F, M, 2] -> [M, 2]
|
|
|
|
|
+ num_gt = len(gt_labels)
|
|
|
|
|
+ anchors = torch.cat(anchors, dim=0)
|
|
|
|
|
+
|
|
|
|
|
+ # check gt
|
|
|
|
|
+ if num_gt == 0 or gt_bboxes.max().item() == 0.:
|
|
|
|
|
+ return {
|
|
|
|
|
+ 'assigned_labels': gt_labels.new_full(pred_cls[..., 0].shape, self.num_classes).long(),
|
|
|
|
|
+ 'assigned_bboxes': gt_bboxes.new_full(pred_box.shape, 0).float(),
|
|
|
|
|
+ 'assign_metrics': gt_bboxes.new_full(pred_cls[..., 0].shape, 0).float(),
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ # get inside points: [N, M]
|
|
|
|
|
+ is_in_gt = self.find_inside_points(gt_bboxes, anchors)
|
|
|
|
|
+ valid_mask = is_in_gt.sum(dim=0) > 0 # [M,]
|
|
|
|
|
+
|
|
|
|
|
+ # ----------------------------------- soft center prior -----------------------------------
|
|
|
|
|
+ gt_center = (gt_bboxes[..., :2] + gt_bboxes[..., 2:]) / 2.0
|
|
|
|
|
+ distance = (anchors.unsqueeze(0) - gt_center.unsqueeze(1)
|
|
|
|
|
+ ).pow(2).sum(-1).sqrt() / strides.unsqueeze(0) # [N, M]
|
|
|
|
|
+ distance = distance * valid_mask.unsqueeze(0)
|
|
|
|
|
+ soft_center_prior = torch.pow(10, distance - self.soft_center_radius)
|
|
|
|
|
+
|
|
|
|
|
+ # ----------------------------------- regression cost -----------------------------------
|
|
|
|
|
+ pair_wise_ious, _ = box_iou(gt_bboxes, pred_box) # [N, M]
|
|
|
|
|
+ pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8) * 3.0
|
|
|
|
|
+
|
|
|
|
|
+ # ----------------------------------- classification cost -----------------------------------
|
|
|
|
|
+ ## select the predicted scores corresponded to the gt_labels
|
|
|
|
|
+ pairwise_pred_scores = pred_cls.permute(1, 0) # [M, C] -> [C, M]
|
|
|
|
|
+ pairwise_pred_scores = pairwise_pred_scores[gt_labels.long(), :].float() # [N, M]
|
|
|
|
|
+ ## scale factor
|
|
|
|
|
+ scale_factor = (pair_wise_ious - pairwise_pred_scores.sigmoid()).abs().pow(2.0)
|
|
|
|
|
+ ## cls cost
|
|
|
|
|
+ pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
|
|
|
|
|
+ pairwise_pred_scores, pair_wise_ious,
|
|
|
|
|
+ reduction="none") * scale_factor # [N, M]
|
|
|
|
|
+
|
|
|
|
|
+ del pairwise_pred_scores
|
|
|
|
|
+
|
|
|
|
|
+ ## foreground cost matrix
|
|
|
|
|
+ cost_matrix = pair_wise_cls_loss + pair_wise_ious_loss + soft_center_prior
|
|
|
|
|
+ max_pad_value = torch.ones_like(cost_matrix) * 1e9
|
|
|
|
|
+ cost_matrix = torch.where(valid_mask[None].repeat(num_gt, 1), # [N, M]
|
|
|
|
|
+ cost_matrix, max_pad_value)
|
|
|
|
|
+
|
|
|
|
|
+ # ----------------------------------- dynamic label assignment -----------------------------------
|
|
|
|
|
+ matched_pred_ious, matched_gt_inds, fg_mask_inboxes = self.dynamic_k_matching(
|
|
|
|
|
+ cost_matrix, pair_wise_ious, num_gt)
|
|
|
|
|
+ del pair_wise_cls_loss, cost_matrix, pair_wise_ious, pair_wise_ious_loss
|
|
|
|
|
+
|
|
|
|
|
+ # -----------------------------------process assigned labels -----------------------------------
|
|
|
|
|
+ assigned_labels = gt_labels.new_full(pred_cls[..., 0].shape,
|
|
|
|
|
+ self.num_classes) # [M,]
|
|
|
|
|
+ assigned_labels[fg_mask_inboxes] = gt_labels[matched_gt_inds].squeeze(-1)
|
|
|
|
|
+ assigned_labels = assigned_labels.long() # [M,]
|
|
|
|
|
+
|
|
|
|
|
+ assigned_bboxes = gt_bboxes.new_full(pred_box.shape, 0) # [M, 4]
|
|
|
|
|
+ assigned_bboxes[fg_mask_inboxes] = gt_bboxes[matched_gt_inds] # [M, 4]
|
|
|
|
|
+
|
|
|
|
|
+ assign_metrics = gt_bboxes.new_full(pred_cls[..., 0].shape, 0) # [M, 4]
|
|
|
|
|
+ assign_metrics[fg_mask_inboxes] = matched_pred_ious # [M, 4]
|
|
|
|
|
+
|
|
|
|
|
+ assigned_dict = dict(
|
|
|
|
|
+ assigned_labels=assigned_labels,
|
|
|
|
|
+ assigned_bboxes=assigned_bboxes,
|
|
|
|
|
+ assign_metrics=assign_metrics
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ return assigned_dict
|
|
|
|
|
+
|
|
|
|
|
+ def find_inside_points(self, gt_bboxes, anchors):
|
|
|
|
|
+ """
|
|
|
|
|
+ gt_bboxes: Tensor -> [N, 2]
|
|
|
|
|
+ anchors: Tensor -> [M, 2]
|
|
|
|
|
+ """
|
|
|
|
|
+ num_anchors = anchors.shape[0]
|
|
|
|
|
+ num_gt = gt_bboxes.shape[0]
|
|
|
|
|
+
|
|
|
|
|
+ anchors_expand = anchors.unsqueeze(0).repeat(num_gt, 1, 1) # [N, M, 2]
|
|
|
|
|
+ gt_bboxes_expand = gt_bboxes.unsqueeze(1).repeat(1, num_anchors, 1) # [N, M, 4]
|
|
|
|
|
+
|
|
|
|
|
+ # offset
|
|
|
|
|
+ lt = anchors_expand - gt_bboxes_expand[..., :2]
|
|
|
|
|
+ rb = gt_bboxes_expand[..., 2:] - anchors_expand
|
|
|
|
|
+ bbox_deltas = torch.cat([lt, rb], dim=-1)
|
|
|
|
|
+
|
|
|
|
|
+ is_in_gts = bbox_deltas.min(dim=-1).values > 0
|
|
|
|
|
+
|
|
|
|
|
+ return is_in_gts
|
|
|
|
|
+
|
|
|
|
|
+ def dynamic_k_matching(self, cost_matrix, pairwise_ious, num_gt):
|
|
|
|
|
+ """Use IoU and matching cost to calculate the dynamic top-k positive
|
|
|
|
|
+ targets.
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ cost_matrix (Tensor): Cost matrix.
|
|
|
|
|
+ pairwise_ious (Tensor): Pairwise iou matrix.
|
|
|
|
|
+ num_gt (int): Number of gt.
|
|
|
|
|
+ valid_mask (Tensor): Mask for valid bboxes.
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ tuple: matched ious and gt indexes.
|
|
|
|
|
+ """
|
|
|
|
|
+ matching_matrix = torch.zeros_like(cost_matrix, dtype=torch.uint8)
|
|
|
|
|
+ # select candidate topk ious for dynamic-k calculation
|
|
|
|
|
+ candidate_topk = min(self.topk_candidates, pairwise_ious.size(1))
|
|
|
|
|
+ topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=1)
|
|
|
|
|
+ # calculate dynamic k for each gt
|
|
|
|
|
+ dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
|
|
|
|
|
+
|
|
|
|
|
+ # sorting the batch cost matirx is faster than topk
|
|
|
|
|
+ _, sorted_indices = torch.sort(cost_matrix, dim=1)
|
|
|
|
|
+ for gt_idx in range(num_gt):
|
|
|
|
|
+ topk_ids = sorted_indices[gt_idx, :dynamic_ks[gt_idx]]
|
|
|
|
|
+ matching_matrix[gt_idx, :][topk_ids] = 1
|
|
|
|
|
+
|
|
|
|
|
+ del topk_ious, dynamic_ks, topk_ids
|
|
|
|
|
+
|
|
|
|
|
+ prior_match_gt_mask = matching_matrix.sum(0) > 1
|
|
|
|
|
+ if prior_match_gt_mask.sum() > 0:
|
|
|
|
|
+ cost_min, cost_argmin = torch.min(
|
|
|
|
|
+ cost_matrix[:, prior_match_gt_mask], dim=0)
|
|
|
|
|
+ matching_matrix[:, prior_match_gt_mask] *= 0
|
|
|
|
|
+ matching_matrix[cost_argmin, prior_match_gt_mask] = 1
|
|
|
|
|
+
|
|
|
|
|
+ # get foreground mask inside box and center prior
|
|
|
|
|
+ fg_mask_inboxes = matching_matrix.sum(0) > 0
|
|
|
|
|
+ matched_pred_ious = (matching_matrix *
|
|
|
|
|
+ pairwise_ious).sum(0)[fg_mask_inboxes]
|
|
|
|
|
+ matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
|
|
|
|
+
|
|
|
|
|
+ return matched_pred_ious, matched_gt_inds, fg_mask_inboxes
|
|
|
|
|
+
|