|
|
@@ -0,0 +1,209 @@
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+import torch.utils.model_zoo as model_zoo
|
|
|
+
|
|
|
+try:
|
|
|
+ from .yolov2_basic import conv1x1, BasicBlock, Bottleneck
|
|
|
+except:
|
|
|
+ from yolov2_basic import conv1x1, BasicBlock, Bottleneck
|
|
|
+
|
|
|
+__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
|
|
|
+ 'resnet152']
|
|
|
+
|
|
|
+
|
|
|
+model_urls = {
|
|
|
+ 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
|
|
+ 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
|
|
+ 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
|
|
+ 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
|
|
+ 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+# --------------------- Yolov2's Backbone -----------------------
|
|
|
+class Yolov2Backbone(nn.Module):
|
|
|
+ def __init__(self, cfg):
|
|
|
+ super().__init__()
|
|
|
+ self.backbone, self.feat_dim = build_resnet(cfg.backbone, cfg.use_pretrained)
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ c5 = self.backbone(x)
|
|
|
+
|
|
|
+ return c5
|
|
|
+
|
|
|
+
|
|
|
+# --------------------- ResNet -----------------------
|
|
|
+class ResNet(nn.Module):
|
|
|
+
|
|
|
+ def __init__(self, block, layers, zero_init_residual=False):
|
|
|
+ super(ResNet, self).__init__()
|
|
|
+ self.inplanes = 64
|
|
|
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
|
|
+ bias=False)
|
|
|
+ self.bn1 = nn.BatchNorm2d(64)
|
|
|
+ self.relu = nn.ReLU(inplace=True)
|
|
|
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
|
+ self.layer1 = self._make_layer(block, 64, layers[0])
|
|
|
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
|
|
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
|
|
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
|
|
+
|
|
|
+ for m in self.modules():
|
|
|
+ if isinstance(m, nn.Conv2d):
|
|
|
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
|
+ elif isinstance(m, nn.BatchNorm2d):
|
|
|
+ nn.init.constant_(m.weight, 1)
|
|
|
+ nn.init.constant_(m.bias, 0)
|
|
|
+
|
|
|
+ # Zero-initialize the last BN in each residual branch,
|
|
|
+ # so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
|
|
+ # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
|
|
+ if zero_init_residual:
|
|
|
+ for m in self.modules():
|
|
|
+ if isinstance(m, Bottleneck):
|
|
|
+ nn.init.constant_(m.bn3.weight, 0)
|
|
|
+ elif isinstance(m, BasicBlock):
|
|
|
+ nn.init.constant_(m.bn2.weight, 0)
|
|
|
+
|
|
|
+ def _make_layer(self, block, planes, blocks, stride=1):
|
|
|
+ downsample = None
|
|
|
+ if stride != 1 or self.inplanes != planes * block.expansion:
|
|
|
+ downsample = nn.Sequential(
|
|
|
+ conv1x1(self.inplanes, planes * block.expansion, stride),
|
|
|
+ nn.BatchNorm2d(planes * block.expansion),
|
|
|
+ )
|
|
|
+
|
|
|
+ layers = []
|
|
|
+ layers.append(block(self.inplanes, planes, stride, downsample))
|
|
|
+ self.inplanes = planes * block.expansion
|
|
|
+ for _ in range(1, blocks):
|
|
|
+ layers.append(block(self.inplanes, planes))
|
|
|
+
|
|
|
+ return nn.Sequential(*layers)
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ """
|
|
|
+ Input:
|
|
|
+ x: (Tensor) -> [B, C, H, W]
|
|
|
+ Output:
|
|
|
+ c5: (Tensor) -> [B, C, H/32, W/32]
|
|
|
+ """
|
|
|
+ c1 = self.conv1(x) # [B, C, H/2, W/2]
|
|
|
+ c1 = self.bn1(c1) # [B, C, H/2, W/2]
|
|
|
+ c1 = self.relu(c1) # [B, C, H/2, W/2]
|
|
|
+ c2 = self.maxpool(c1) # [B, C, H/4, W/4]
|
|
|
+
|
|
|
+ c2 = self.layer1(c2) # [B, C, H/4, W/4]
|
|
|
+ c3 = self.layer2(c2) # [B, C, H/8, W/8]
|
|
|
+ c4 = self.layer3(c3) # [B, C, H/16, W/16]
|
|
|
+ c5 = self.layer4(c4) # [B, C, H/32, W/32]
|
|
|
+
|
|
|
+ return c5
|
|
|
+
|
|
|
+
|
|
|
+# --------------------- Functions -----------------------
|
|
|
+def build_resnet(model_name="resnet18", pretrained=False):
|
|
|
+ if model_name == 'resnet18':
|
|
|
+ model = resnet18(pretrained)
|
|
|
+ feat_dim = 512
|
|
|
+ elif model_name == 'resnet34':
|
|
|
+ model = resnet34(pretrained)
|
|
|
+ feat_dim = 512
|
|
|
+ elif model_name == 'resnet50':
|
|
|
+ model = resnet50(pretrained)
|
|
|
+ feat_dim = 2048
|
|
|
+ elif model_name == 'resnet101':
|
|
|
+ model = resnet34(pretrained)
|
|
|
+ feat_dim = 2048
|
|
|
+ else:
|
|
|
+ raise NotImplementedError("Unknown resnet: {}".format(model_name))
|
|
|
+
|
|
|
+ return model, feat_dim
|
|
|
+
|
|
|
+def resnet18(pretrained=False, **kwargs):
|
|
|
+ """Constructs a ResNet-18 model.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
+ """
|
|
|
+ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
|
|
|
+ if pretrained:
|
|
|
+ # strict = False as we don't need fc layer params.
|
|
|
+ model.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False)
|
|
|
+ return model
|
|
|
+
|
|
|
+def resnet34(pretrained=False, **kwargs):
|
|
|
+ """Constructs a ResNet-34 model.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
+ """
|
|
|
+ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
|
|
+ if pretrained:
|
|
|
+ model.load_state_dict(model_zoo.load_url(model_urls['resnet34']), strict=False)
|
|
|
+ return model
|
|
|
+
|
|
|
+def resnet50(pretrained=False, **kwargs):
|
|
|
+ """Constructs a ResNet-50 model.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
+ """
|
|
|
+ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
|
|
|
+ if pretrained:
|
|
|
+ model.load_state_dict(model_zoo.load_url(model_urls['resnet50']), strict=False)
|
|
|
+ return model
|
|
|
+
|
|
|
+def resnet101(pretrained=False, **kwargs):
|
|
|
+ """Constructs a ResNet-101 model.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
+ """
|
|
|
+ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
|
|
|
+ if pretrained:
|
|
|
+ model.load_state_dict(model_zoo.load_url(model_urls['resnet101']), strict=False)
|
|
|
+ return model
|
|
|
+
|
|
|
+def resnet152(pretrained=False, **kwargs):
|
|
|
+ """Constructs a ResNet-152 model.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
|
+ """
|
|
|
+ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
|
|
|
+ if pretrained:
|
|
|
+ model.load_state_dict(model_zoo.load_url(model_urls['resnet152']), strict=False)
|
|
|
+ return model
|
|
|
+
|
|
|
+
|
|
|
+if __name__=='__main__':
|
|
|
+ import time
|
|
|
+ from thop import profile
|
|
|
+ # YOLOv8-Base config
|
|
|
+ class Yolov2BaseConfig(object):
|
|
|
+ def __init__(self) -> None:
|
|
|
+ # ---------------- Model config ----------------
|
|
|
+ self.out_stride = 32
|
|
|
+ self.max_stride = 32
|
|
|
+ ## Backbone
|
|
|
+ self.backbone = 'resnet18'
|
|
|
+ self.use_pretrained = True
|
|
|
+
|
|
|
+ cfg = Yolov2BaseConfig()
|
|
|
+ # Build backbone
|
|
|
+ model = Yolov2Backbone(cfg)
|
|
|
+
|
|
|
+ # Inference
|
|
|
+ x = torch.randn(1, 3, 640, 640)
|
|
|
+ t0 = time.time()
|
|
|
+ output = model(x)
|
|
|
+ t1 = time.time()
|
|
|
+ print('Time: ', t1 - t0)
|
|
|
+ print(output.shape)
|
|
|
+
|
|
|
+ print('==============================')
|
|
|
+ flops, params = profile(model, inputs=(x, ), verbose=False)
|
|
|
+ print('==============================')
|
|
|
+ print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
|
|
|
+ print('Params : {:.2f} M'.format(params / 1e6))
|