|
|
@@ -8,9 +8,9 @@
|
|
|
|
|
|
- COCO
|
|
|
|
|
|
-| Model | Backbone | Batch | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
-|--------|------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
-| YOLOv1 | ResNet-18 | 1xb16 | 640 | | | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
|
|
|
+| Model | Backbone | Batch | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight | Logs |
|
|
|
+|--------|------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|------|
|
|
|
+| YOLOv1 | ResNet-18 | 1xb16 | 640 | 27.6 | 46.8 | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolov1_r18_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOv1-R18-COCO.txt) |
|
|
|
|
|
|
- For training, we train redesigned YOLOv1 with 150 epochs on COCO.
|
|
|
- For data augmentation, we use the SSD's augmentation, including the RandomCrop, RandomDistort, RandomExpand, RandomHFlip and so on.
|