|
|
@@ -214,13 +214,13 @@ class YoloTrainer(object):
|
|
|
|
|
|
# Backward
|
|
|
self.scaler.scale(losses).backward()
|
|
|
- grad_norm = None
|
|
|
+ gnorm = None
|
|
|
|
|
|
# Optimize
|
|
|
if (iter_i + 1) % self.grad_accumulate == 0:
|
|
|
if self.cfg.clip_max_norm > 0:
|
|
|
self.scaler.unscale_(self.optimizer)
|
|
|
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.cfg.clip_max_norm)
|
|
|
+ gnorm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.cfg.clip_max_norm)
|
|
|
self.scaler.step(self.optimizer)
|
|
|
self.scaler.update()
|
|
|
self.optimizer.zero_grad()
|
|
|
@@ -233,7 +233,7 @@ class YoloTrainer(object):
|
|
|
metric_logger.update(**loss_dict_reduced)
|
|
|
metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
|
|
|
metric_logger.update(size=img_size)
|
|
|
- metric_logger.update(grad_norm=grad_norm)
|
|
|
+ metric_logger.update(gnorm=gnorm)
|
|
|
|
|
|
if self.args.debug:
|
|
|
print("For debug mode, we only train 1 iteration")
|