|
|
@@ -0,0 +1,61 @@
|
|
|
+# Anchor-free YOLOv7:
|
|
|
+
|
|
|
+- VOC
|
|
|
+
|
|
|
+| Model | Batch | Scale | AP<sup>val<br>0.5 | Weight | Logs |
|
|
|
+|-------------|-------|-------|-------------------|--------|--------|
|
|
|
+| YOLOv7-AF-S | 1xb16 | 640 | 82.7 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v7/releases/download/yolo_tutorial_ckpt/yolov7_af_s_voc.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v7/releases/download/yolo_tutorial_ckpt/YOLOv7-AF-S-VOC.txt) |
|
|
|
+
|
|
|
+- COCO
|
|
|
+
|
|
|
+| Model | Batch | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight | Logs |
|
|
|
+|-------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|--------|
|
|
|
+| YOLOv7-AF-S | 1xb16 | 640 | | | 26.9 | 8.9 | | |
|
|
|
+
|
|
|
+- For training, we train redesigned YOLOv7-AF with 500 epochs on COCO. We also use the gradient accumulation.
|
|
|
+- For data augmentation, we use the RandomAffine, RandomHSV, Mosaic and YOLOX's Mixup augmentation.
|
|
|
+- For optimizer, we use AdamW with weight decay of 0.05 and per image base lr of 0.001 / 64.
|
|
|
+- For learning rate scheduler, we use cosine decay scheduler.
|
|
|
+- For batch size, we set it to 16, and we also use the gradient accumulation to approximate batch size of 256.
|
|
|
+
|
|
|
+
|
|
|
+## Train YOLOv7-AF
|
|
|
+### Single GPU
|
|
|
+Taking training YOLOv7-AF-S on COCO as the example,
|
|
|
+```Shell
|
|
|
+python train.py --cuda -d coco --root path/to/coco -m yolov7_af_s -bs 16 --fp16
|
|
|
+```
|
|
|
+
|
|
|
+### Multi GPU
|
|
|
+Taking training YOLOv7-AF-S on COCO as the example,
|
|
|
+```Shell
|
|
|
+python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m yolov7_af_s -bs 16 --fp16
|
|
|
+```
|
|
|
+
|
|
|
+## Test YOLOv7-AF
|
|
|
+Taking testing YOLOv7-AF-S on COCO-val as the example,
|
|
|
+```Shell
|
|
|
+python test.py --cuda -d coco --root path/to/coco -m yolov7_af_s --weight path/to/yolov7.pth --show
|
|
|
+```
|
|
|
+
|
|
|
+## Evaluate YOLOv7-AF
|
|
|
+Taking evaluating YOLOv7-AF-S on COCO-val as the example,
|
|
|
+```Shell
|
|
|
+python eval.py --cuda -d coco --root path/to/coco -m yolov7_af_s --weight path/to/yolov7.pth
|
|
|
+```
|
|
|
+
|
|
|
+## Demo
|
|
|
+### Detect with Image
|
|
|
+```Shell
|
|
|
+python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov7_af_s --weight path/to/weight --show
|
|
|
+```
|
|
|
+
|
|
|
+### Detect with Video
|
|
|
+```Shell
|
|
|
+python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov7_af_s --weight path/to/weight --show --gif
|
|
|
+```
|
|
|
+
|
|
|
+### Detect with Camera
|
|
|
+```Shell
|
|
|
+python demo.py --mode camera --cuda -m yolov7_af_s --weight path/to/weight --show --gif
|
|
|
+```
|