|
|
@@ -30,19 +30,19 @@ class DetHead(nn.Module):
|
|
|
for i in range(num_cls_head):
|
|
|
if i == 0:
|
|
|
cls_feats.append(ConvModule(in_dim, in_dim, kernel_size=3, stride=1, groups=in_dim))
|
|
|
- cls_feats.append(ConvModule(in_dim, self.cls_head_dim, kernel_size=1))
|
|
|
+ cls_feats.append(ConvModule(in_dim, cls_head_dim, kernel_size=1))
|
|
|
else:
|
|
|
- cls_feats.append(ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=3, stride=1, groups=self.cls_head_dim))
|
|
|
- cls_feats.append(ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=1))
|
|
|
+ cls_feats.append(ConvModule(cls_head_dim, cls_head_dim, kernel_size=3, stride=1, groups=cls_head_dim))
|
|
|
+ cls_feats.append(ConvModule(cls_head_dim, cls_head_dim, kernel_size=1))
|
|
|
|
|
|
## bbox regression head
|
|
|
reg_feats = []
|
|
|
self.reg_head_dim = reg_head_dim
|
|
|
for i in range(num_reg_head):
|
|
|
if i == 0:
|
|
|
- reg_feats.append(ConvModule(in_dim, self.reg_head_dim, kernel_size=3, stride=1))
|
|
|
+ reg_feats.append(ConvModule(in_dim, reg_head_dim, kernel_size=3, stride=1))
|
|
|
else:
|
|
|
- reg_feats.append(ConvModule(self.reg_head_dim, self.reg_head_dim, kernel_size=3, stride=1))
|
|
|
+ reg_feats.append(ConvModule(reg_head_dim, reg_head_dim, kernel_size=3, stride=1))
|
|
|
|
|
|
self.cls_feats = nn.Sequential(*cls_feats)
|
|
|
self.reg_feats = nn.Sequential(*reg_feats)
|