|
|
@@ -1,138 +0,0 @@
|
|
|
-import torch
|
|
|
-import torch.nn as nn
|
|
|
-from typing import List
|
|
|
-
|
|
|
-
|
|
|
-# --------------------- Basic modules ---------------------
|
|
|
-def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
|
|
|
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
|
|
|
-
|
|
|
- return conv
|
|
|
-
|
|
|
-def get_activation(act_type=None):
|
|
|
- if act_type == 'relu':
|
|
|
- return nn.ReLU(inplace=True)
|
|
|
- elif act_type == 'lrelu':
|
|
|
- return nn.LeakyReLU(0.1, inplace=True)
|
|
|
- elif act_type == 'mish':
|
|
|
- return nn.Mish(inplace=True)
|
|
|
- elif act_type == 'silu':
|
|
|
- return nn.SiLU(inplace=True)
|
|
|
- elif act_type is None:
|
|
|
- return nn.Identity()
|
|
|
- else:
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
-def get_norm(norm_type, dim):
|
|
|
- if norm_type == 'BN':
|
|
|
- return nn.BatchNorm2d(dim)
|
|
|
- elif norm_type == 'GN':
|
|
|
- return nn.GroupNorm(num_groups=32, num_channels=dim)
|
|
|
- elif norm_type is None:
|
|
|
- return nn.Identity()
|
|
|
- else:
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
-class BasicConv(nn.Module):
|
|
|
- def __init__(self,
|
|
|
- in_dim, # in channels
|
|
|
- out_dim, # out channels
|
|
|
- kernel_size=1, # kernel size
|
|
|
- padding=0, # padding
|
|
|
- stride=1, # padding
|
|
|
- dilation=1, # dilation
|
|
|
- act_type :str = 'lrelu', # activation
|
|
|
- norm_type :str = 'BN', # normalization
|
|
|
- depthwise :bool = False
|
|
|
- ):
|
|
|
- super(BasicConv, self).__init__()
|
|
|
- self.depthwise = depthwise
|
|
|
- use_bias = False if norm_type is not None else True
|
|
|
- if not depthwise:
|
|
|
- self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=1, bias=use_bias)
|
|
|
- self.norm = get_norm(norm_type, out_dim)
|
|
|
- else:
|
|
|
- self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=in_dim, bias=use_bias)
|
|
|
- self.norm1 = get_norm(norm_type, in_dim)
|
|
|
- self.conv2 = get_conv2d(in_dim, out_dim, k=1, p=0, s=1, d=1, g=1)
|
|
|
- self.norm2 = get_norm(norm_type, out_dim)
|
|
|
- self.act = get_activation(act_type)
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- if not self.depthwise:
|
|
|
- return self.act(self.norm(self.conv(x)))
|
|
|
- else:
|
|
|
- # Depthwise conv
|
|
|
- x = self.norm1(self.conv1(x))
|
|
|
- # Pointwise conv
|
|
|
- x = self.act(self.norm2(self.conv2(x)))
|
|
|
- return x
|
|
|
-
|
|
|
-
|
|
|
-# ---------------------------- Basic Modules ----------------------------
|
|
|
-class YoloBottleneck(nn.Module):
|
|
|
- def __init__(self,
|
|
|
- in_dim :int,
|
|
|
- out_dim :int,
|
|
|
- kernel_size :List = [1, 3],
|
|
|
- expansion :float = 0.5,
|
|
|
- shortcut :bool = False,
|
|
|
- act_type :str = 'silu',
|
|
|
- norm_type :str = 'BN',
|
|
|
- depthwise :bool = False,
|
|
|
- ) -> None:
|
|
|
- super(YoloBottleneck, self).__init__()
|
|
|
- inter_dim = int(out_dim * expansion)
|
|
|
- # ----------------- Network setting -----------------
|
|
|
- self.conv_layer1 = BasicConv(in_dim, inter_dim,
|
|
|
- kernel_size=kernel_size[0], padding=kernel_size[0]//2, stride=1,
|
|
|
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
- self.conv_layer2 = BasicConv(inter_dim, out_dim,
|
|
|
- kernel_size=kernel_size[1], padding=kernel_size[1]//2, stride=1,
|
|
|
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
- self.shortcut = shortcut and in_dim == out_dim
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- h = self.conv_layer2(self.conv_layer1(x))
|
|
|
-
|
|
|
- return x + h if self.shortcut else h
|
|
|
-
|
|
|
-class CSPBlock(nn.Module):
|
|
|
- def __init__(self,
|
|
|
- in_dim,
|
|
|
- out_dim,
|
|
|
- num_blocks :int = 1,
|
|
|
- expansion :float = 0.5,
|
|
|
- shortcut :bool = False,
|
|
|
- act_type :str = 'silu',
|
|
|
- norm_type :str = 'BN',
|
|
|
- depthwise :bool = False,
|
|
|
- ):
|
|
|
- super(CSPBlock, self).__init__()
|
|
|
- # ---------- Basic parameters ----------
|
|
|
- self.num_blocks = num_blocks
|
|
|
- self.expansion = expansion
|
|
|
- self.shortcut = shortcut
|
|
|
- inter_dim = round(out_dim * expansion)
|
|
|
- # ---------- Model parameters ----------
|
|
|
- self.conv_layer_1 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
- self.conv_layer_2 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
- self.conv_layer_3 = BasicConv(inter_dim * 2, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
- self.module = nn.Sequential(*[YoloBottleneck(inter_dim,
|
|
|
- inter_dim,
|
|
|
- kernel_size = [1, 3],
|
|
|
- expansion = 1.0,
|
|
|
- shortcut = shortcut,
|
|
|
- act_type = act_type,
|
|
|
- norm_type = norm_type,
|
|
|
- depthwise = depthwise)
|
|
|
- for _ in range(num_blocks)
|
|
|
- ])
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- x1 = self.conv_layer_1(x)
|
|
|
- x2 = self.module(self.conv_layer_2(x))
|
|
|
- out = self.conv_layer_3(torch.cat([x1, x2], dim=1))
|
|
|
-
|
|
|
- return out
|
|
|
-
|