|
|
@@ -12,49 +12,50 @@
|
|
|
|--------|------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
| YOLOv1 | ResNet-18 | 1xb16 | 640 | | | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
|
|
|
|
|
|
-- For training, we train redesigned YOLOv1 with 150 epochs on COCO. We also gradient accumulate.
|
|
|
-- For data augmentation, we only use the large scale jitter (LSJ), no Mosaic or Mixup augmentation.
|
|
|
-- For optimizer, we use SGD with momentum 0.937, weight decay 0.0005 and base lr 0.01.
|
|
|
-- For learning rate scheduler, we use linear decay scheduler.
|
|
|
+- For training, we train redesigned YOLOv1 with 150 epochs on COCO.
|
|
|
+- For data augmentation, we use the SSD's augmentation, including the RandomCrop, RandomDistort, RandomExpand, RandomHFlip and so on.
|
|
|
+- For optimizer, we use AdamW with weight decay of 0.05 and per image base lr of 0.001 / 64.
|
|
|
+- For learning rate scheduler, we use cosine decay scheduler.
|
|
|
+- For batch size, we set it to 16, and we also use the gradient accumulation to approximate batch size of 256.
|
|
|
|
|
|
|
|
|
## Train YOLOv1
|
|
|
### Single GPU
|
|
|
-Taking training YOLOv1 on COCO as the example,
|
|
|
+Taking training YOLOv1-R18 on COCO as the example,
|
|
|
```Shell
|
|
|
-python train.py --cuda -d coco --root path/to/coco -m yolov1 -bs 16 -size 640 --wp_epoch 3 --max_epoch 150 --eval_epoch 10 --no_aug_epoch 10 --ema --fp16 --multi_scale
|
|
|
+python train.py --cuda -d coco --root path/to/coco -m yolov1_r18 -bs 16 --fp16
|
|
|
```
|
|
|
|
|
|
### Multi GPU
|
|
|
-Taking training YOLOv1 on COCO as the example,
|
|
|
+Taking training YOLOv1-R18 on COCO as the example,
|
|
|
```Shell
|
|
|
-python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov1 -bs 128 -size 640 --wp_epoch 3 --max_epoch 150 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/
|
|
|
+python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m yolov1_r18 -bs 16 --fp16
|
|
|
```
|
|
|
|
|
|
## Test YOLOv1
|
|
|
-Taking testing YOLOv1 on COCO-val as the example,
|
|
|
+Taking testing YOLOv1-R18 on COCO-val as the example,
|
|
|
```Shell
|
|
|
-python test.py --cuda -d coco --root path/to/coco -m yolov1 --weight path/to/yolov1.pth -size 640 -vt 0.3 --show
|
|
|
+python test.py --cuda -d coco --root path/to/coco -m yolov1_r18 --weight path/to/yolov1.pth --show
|
|
|
```
|
|
|
|
|
|
## Evaluate YOLOv1
|
|
|
-Taking evaluating YOLOv1 on COCO-val as the example,
|
|
|
+Taking evaluating YOLOv1-R18 on COCO-val as the example,
|
|
|
```Shell
|
|
|
-python eval.py --cuda -d coco-val --root path/to/coco -m yolov1 --weight path/to/yolov1.pth
|
|
|
+python eval.py --cuda -d coco --root path/to/coco -m yolov1_r18 --weight path/to/yolov1.pth
|
|
|
```
|
|
|
|
|
|
## Demo
|
|
|
### Detect with Image
|
|
|
```Shell
|
|
|
-python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov1 --weight path/to/weight -size 640 -vt 0.3 --show
|
|
|
+python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov1_r18 --weight path/to/weight --show
|
|
|
```
|
|
|
|
|
|
### Detect with Video
|
|
|
```Shell
|
|
|
-python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov1 --weight path/to/weight -size 640 -vt 0.3 --show --gif
|
|
|
+python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov1_r18 --weight path/to/weight --show --gif
|
|
|
```
|
|
|
|
|
|
### Detect with Camera
|
|
|
```Shell
|
|
|
-python demo.py --mode camera --cuda -m yolov1 --weight path/to/weight -size 640 -vt 0.3 --show --gif
|
|
|
+python demo.py --mode camera --cuda -m yolov1_r18 --weight path/to/weight --show --gif
|
|
|
```
|