|
|
@@ -1,33 +1,42 @@
|
|
|
# YOLOv8:
|
|
|
|
|
|
-| Model | Batch | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | ckpt | logs |
|
|
|
-|-----------|--------|-------|------------------------|-------------------|-------------------|--------------------|--------|------|
|
|
|
-| YOLOv8-S | 8xb16 | 640 | | | | | | |
|
|
|
+- VOC
|
|
|
|
|
|
+| Model | Batch | Scale | AP<sup>val<br>0.5 | Weight | Logs |
|
|
|
+|-------------|-------|-------|-------------------|--------|--------|
|
|
|
+| YOLOv8-S | 1xb16 | 640 | | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/yolov8_s_voc.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v5/releases/download/yolo_tutorial_ckpt/YOLOv8-S-VOC.txt) |
|
|
|
|
|
|
-## Train YOLO
|
|
|
+- COCO
|
|
|
+
|
|
|
+| Model | Batch | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight | Logs |
|
|
|
+|-------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|--------|
|
|
|
+| YOLOv8-S | 1xb16 | 640 | | | 26.9 | 8.9 | | |
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+## Train YOLOv8
|
|
|
### Single GPU
|
|
|
Taking training YOLOv8-S on COCO as the example,
|
|
|
```Shell
|
|
|
-python train.py --cuda -d coco --root path/to/coco -m yolov8_s -bs 16 --fp16
|
|
|
+python train.py --cuda -d coco --root path/to/coco -m yolov8_s -bs 16 --fp16
|
|
|
```
|
|
|
|
|
|
### Multi GPU
|
|
|
-Taking training YOLO on COCO as the example,
|
|
|
+Taking training YOLOv8-S on COCO as the example,
|
|
|
```Shell
|
|
|
-python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root /data/datasets/ -m yolov8_s -bs 128 --fp16 --sybn
|
|
|
+python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m yolov8_s -bs 256 --fp16
|
|
|
```
|
|
|
|
|
|
-## Test YOLO
|
|
|
-Taking testing YOLO on COCO-val as the example,
|
|
|
+## Test YOLOv8
|
|
|
+Taking testing YOLOv8-S on COCO-val as the example,
|
|
|
```Shell
|
|
|
-python test.py --cuda -d coco --root path/to/coco -m yolov8_s --weight path/to/yolo.pth --show
|
|
|
+python test.py --cuda -d coco --root path/to/coco -m yolov8_s --weight path/to/yolov8.pth --show
|
|
|
```
|
|
|
|
|
|
-## Evaluate YOLO
|
|
|
-Taking evaluating YOLO on COCO-val as the example,
|
|
|
+## Evaluate YOLOv8
|
|
|
+Taking evaluating YOLOv8-S on COCO-val as the example,
|
|
|
```Shell
|
|
|
-python eval.py --cuda -d coco --root path/to/coco -m yolov8_s --weight path/to/yolo.pth
|
|
|
+python eval.py --cuda -d coco --root path/to/coco -m yolov8_s --weight path/to/yolov8.pth
|
|
|
```
|
|
|
|
|
|
## Demo
|
|
|
@@ -38,10 +47,10 @@ python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov8_s
|
|
|
|
|
|
### Detect with Video
|
|
|
```Shell
|
|
|
-python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov8_s --weight path/to/weight --show
|
|
|
+python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov8_s --weight path/to/weight --show --gif
|
|
|
```
|
|
|
|
|
|
### Detect with Camera
|
|
|
```Shell
|
|
|
-python demo.py --mode camera --cuda -m yolov8_s --weight path/to/weight --show
|
|
|
+python demo.py --mode camera --cuda -m yolov8_s --weight path/to/weight --show --gif
|
|
|
```
|