|
|
@@ -23,8 +23,8 @@
|
|
|
| YOLOv1-R18 | 1xb16 | 640 | 73.8 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolov1_r18_voc.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOv1-R18-VOC.txt) |
|
|
|
| YOLOv2-R18 | 1xb16 | 640 | 75.1 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolov2_r18_voc.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOv2-R18-VOC.txt) |
|
|
|
| YOLOv3-S | 1xb16 | 640 | 77.1 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolov3_s_voc.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOv3-S-VOC.txt) |
|
|
|
-| YOLOv5-S | 1xb16 | 640 | 81.2 | [ckpt]() | [log]() |
|
|
|
-| YOLOv5-AF-S | 1xb16 | 640 | | [ckpt]() | [log]() |
|
|
|
+| YOLOv5-S | 1xb16 | 640 | 81.2 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolov5_s_voc.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOv5-S-VOC.txt) |
|
|
|
+| YOLOv5-AF-S | 1xb16 | 640 | 83.4 | [ckpt]() | [log]() |
|
|
|
| YOLOv8-S | 1xb16 | 640 | | [ckpt]() | [log]() |
|
|
|
| GELAN-S | 1xb16 | 640 | | [ckpt]() | [log]() |
|
|
|
|
|
|
@@ -40,7 +40,7 @@
|
|
|
| YOLOv8-S | 1xb16 | 640 | 70 | 42.5 | 59.3 | 28.4 | 11.3 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolov8_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOv8-S-COCO.txt) |
|
|
|
| GELAN-S | 1xb16 | 640 | 32 | 42.6 | 58.8 | 27.1 (26.4) | 7.1 (7.2) | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/gelan_s_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/GELAN-S-COCO.txt) |
|
|
|
|
|
|
-需要说明的是,对于GELAN-S,未进行重参数化时,模型参数量为7.1 M,理论计算量为27.1 GFLOPs;经过重参数化处理后,模型参数量为7.2 M,理论计算量为26.4 GFLOPs。测试的GELAN-S的FPS很低,因为它的regression head部分用到了group=4的分组卷积,由于PyTorch框架本身没有对这个操作做优化,因此,虽然分组卷积的理论计算量会更低,但在不做加快优化的情况下,推理速度会慢于group=1的普通卷积,类似的现象在depthwise卷积中也能看到。因此,这里测试的GELAN-S的速度不具备参考性。
|
|
|
+需要说明的是,对于GELAN-S,未进行重参数化时,模型参数量为7.1 M,理论计算量为27.1 GFLOPs;经过重参数化处理后,模型参数量为7.2 M,理论计算量为26.4 GFLOPs。然而,GELAN-S的FPS很低,起初,以为是因为它的regression head部分用到了group=4的分组卷积,由于PyTorch框架本身没有对这个操作做优化,因此,虽然分组卷积的理论计算量会更低,但在不做加快优化的情况下,推理速度会慢于group=1的普通卷积,类似的现象在depthwise卷积中也能看到。但是,即便将group=4修改为group=1,依旧不超过35 FPS,远远低于YOLOv8-S的速度。
|
|
|
|
|
|
### RT-DETR系列
|
|
|
下表汇报了本项目的RT-DETR系列在COCO数据集上的性能指标。所有模型都采用4张3090显卡训练的,在训练中,每张3090显卡上的batch size被设置为4,并使用多卡同步BN来计算BN层的统计量。需要说明的是,官方的RT-DETR所汇报的FPS指标,是经过各种加速处理后所测得的,因而会很高,而这里我们没有做加速处理,也没有编译CUDA版本的Deformable Attention算子,纯纯的PyTorch框架实现的,且使用的是4060显卡,而非诸如3090和V100等高算力显卡,因此,FPS指标会显著低于论文中所汇报的指标。
|