|
|
@@ -0,0 +1,378 @@
|
|
|
+import math
|
|
|
+import torch
|
|
|
+import torch.nn.functional as F
|
|
|
+
|
|
|
+from utils.box_ops import *
|
|
|
+
|
|
|
+
|
|
|
+@torch.no_grad()
|
|
|
+def get_ious_and_iou_loss(inputs,
|
|
|
+ targets,
|
|
|
+ weight=None,
|
|
|
+ box_mode="xyxy",
|
|
|
+ loss_type="iou",
|
|
|
+ reduction="none"):
|
|
|
+ """
|
|
|
+ Compute iou loss of type ['iou', 'giou', 'linear_iou']
|
|
|
+
|
|
|
+ Args:
|
|
|
+ inputs (tensor): pred values
|
|
|
+ targets (tensor): target values
|
|
|
+ weight (tensor): loss weight
|
|
|
+ box_mode (str): 'xyxy' or 'ltrb', 'ltrb' is currently supported.
|
|
|
+ loss_type (str): 'giou' or 'iou' or 'linear_iou'
|
|
|
+ reduction (str): reduction manner
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ loss (tensor): computed iou loss.
|
|
|
+ """
|
|
|
+ if box_mode == "ltrb":
|
|
|
+ inputs = torch.cat((-inputs[..., :2], inputs[..., 2:]), dim=-1)
|
|
|
+ targets = torch.cat((-targets[..., :2], targets[..., 2:]), dim=-1)
|
|
|
+ elif box_mode != "xyxy":
|
|
|
+ raise NotImplementedError
|
|
|
+
|
|
|
+ eps = torch.finfo(torch.float32).eps
|
|
|
+
|
|
|
+ inputs_area = (inputs[..., 2] - inputs[..., 0]).clamp_(min=0) \
|
|
|
+ * (inputs[..., 3] - inputs[..., 1]).clamp_(min=0)
|
|
|
+ targets_area = (targets[..., 2] - targets[..., 0]).clamp_(min=0) \
|
|
|
+ * (targets[..., 3] - targets[..., 1]).clamp_(min=0)
|
|
|
+
|
|
|
+ w_intersect = (torch.min(inputs[..., 2], targets[..., 2])
|
|
|
+ - torch.max(inputs[..., 0], targets[..., 0])).clamp_(min=0)
|
|
|
+ h_intersect = (torch.min(inputs[..., 3], targets[..., 3])
|
|
|
+ - torch.max(inputs[..., 1], targets[..., 1])).clamp_(min=0)
|
|
|
+
|
|
|
+ area_intersect = w_intersect * h_intersect
|
|
|
+ area_union = targets_area + inputs_area - area_intersect
|
|
|
+ ious = area_intersect / area_union.clamp(min=eps)
|
|
|
+
|
|
|
+ if loss_type == "iou":
|
|
|
+ loss = -ious.clamp(min=eps).log()
|
|
|
+ elif loss_type == "linear_iou":
|
|
|
+ loss = 1 - ious
|
|
|
+ elif loss_type == "giou":
|
|
|
+ g_w_intersect = torch.max(inputs[..., 2], targets[..., 2]) \
|
|
|
+ - torch.min(inputs[..., 0], targets[..., 0])
|
|
|
+ g_h_intersect = torch.max(inputs[..., 3], targets[..., 3]) \
|
|
|
+ - torch.min(inputs[..., 1], targets[..., 1])
|
|
|
+ ac_uion = g_w_intersect * g_h_intersect
|
|
|
+ gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps)
|
|
|
+ loss = 1 - gious
|
|
|
+ else:
|
|
|
+ raise NotImplementedError
|
|
|
+ if weight is not None:
|
|
|
+ loss = loss * weight.view(loss.size())
|
|
|
+ if reduction == "mean":
|
|
|
+ loss = loss.sum() / max(weight.sum().item(), eps)
|
|
|
+ else:
|
|
|
+ if reduction == "mean":
|
|
|
+ loss = loss.mean()
|
|
|
+ if reduction == "sum":
|
|
|
+ loss = loss.sum()
|
|
|
+
|
|
|
+ return ious, loss
|
|
|
+
|
|
|
+
|
|
|
+class FcosMatcher(object):
|
|
|
+ """
|
|
|
+ This code referenced to https://github.com/Megvii-BaseDetection/cvpods
|
|
|
+ """
|
|
|
+ def __init__(self,
|
|
|
+ num_classes,
|
|
|
+ center_sampling_radius,
|
|
|
+ object_sizes_of_interest,
|
|
|
+ box_weights=[1, 1, 1, 1]):
|
|
|
+ self.num_classes = num_classes
|
|
|
+ self.center_sampling_radius = center_sampling_radius
|
|
|
+ self.object_sizes_of_interest = object_sizes_of_interest
|
|
|
+ self.box_weightss = box_weights
|
|
|
+
|
|
|
+
|
|
|
+ def get_deltas(self, anchors, boxes):
|
|
|
+ """
|
|
|
+ Get box regression transformation deltas (dl, dt, dr, db) that can be used
|
|
|
+ to transform the `anchors` into the `boxes`. That is, the relation
|
|
|
+ ``boxes == self.apply_deltas(deltas, anchors)`` is true.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ anchors (Tensor): anchors, e.g., feature map coordinates
|
|
|
+ boxes (Tensor): target of the transformation, e.g., ground-truth
|
|
|
+ boxes.
|
|
|
+ """
|
|
|
+ assert isinstance(anchors, torch.Tensor), type(anchors)
|
|
|
+ assert isinstance(boxes, torch.Tensor), type(boxes)
|
|
|
+ deltas = torch.cat((anchors - boxes[..., :2], boxes[..., 2:] - anchors),
|
|
|
+ dim=-1) * anchors.new_tensor(self.box_weightss)
|
|
|
+ return deltas
|
|
|
+
|
|
|
+
|
|
|
+ @torch.no_grad()
|
|
|
+ def __call__(self, fpn_strides, anchors, targets):
|
|
|
+ """
|
|
|
+ fpn_strides: (List) List[8, 16, 32, ...] stride of network output.
|
|
|
+ anchors: (List of Tensor) List[F, M, 2], F = num_fpn_levels
|
|
|
+ targets: (Dict) dict{'boxes': [...],
|
|
|
+ 'labels': [...],
|
|
|
+ 'orig_size': ...}
|
|
|
+ """
|
|
|
+ gt_classes = []
|
|
|
+ gt_anchors_deltas = []
|
|
|
+ gt_centerness = []
|
|
|
+ device = anchors[0].device
|
|
|
+
|
|
|
+ # List[F, M, 2] -> [M, 2]
|
|
|
+ anchors_over_all_feature_maps = torch.cat(anchors, dim=0).to(device)
|
|
|
+
|
|
|
+ for targets_per_image in targets:
|
|
|
+ # generate object_sizes_of_interest: List[[M, 2]]
|
|
|
+ object_sizes_of_interest = [anchors_i.new_tensor(scale_range).unsqueeze(0).expand(anchors_i.size(0), -1)
|
|
|
+ for anchors_i, scale_range in zip(anchors, self.object_sizes_of_interest)]
|
|
|
+ # List[F, M, 2] -> [M, 2], M = M1 + M2 + ... + MF
|
|
|
+ object_sizes_of_interest = torch.cat(object_sizes_of_interest, dim=0)
|
|
|
+ # [N, 4]
|
|
|
+ tgt_box = targets_per_image['boxes'].to(device)
|
|
|
+ # [N, C]
|
|
|
+ tgt_cls = targets_per_image['labels'].to(device)
|
|
|
+ # [N, M, 4], M = M1 + M2 + ... + MF
|
|
|
+ deltas = self.get_deltas(anchors_over_all_feature_maps, tgt_box.unsqueeze(1))
|
|
|
+
|
|
|
+ has_gt = (len(tgt_cls) > 0)
|
|
|
+ if has_gt:
|
|
|
+ if self.center_sampling_radius > 0:
|
|
|
+ # bbox centers: [N, 2]
|
|
|
+ centers = (tgt_box[..., :2] + tgt_box[..., 2:]) * 0.5
|
|
|
+
|
|
|
+ is_in_boxes = []
|
|
|
+ for stride, anchors_i in zip(fpn_strides, anchors):
|
|
|
+ radius = stride * self.center_sampling_radius
|
|
|
+ # [N, 4]
|
|
|
+ center_boxes = torch.cat((
|
|
|
+ torch.max(centers - radius, tgt_box[:, :2]),
|
|
|
+ torch.min(centers + radius, tgt_box[:, 2:]),
|
|
|
+ ), dim=-1)
|
|
|
+ # [N, Mi, 4]
|
|
|
+ center_deltas = self.get_deltas(anchors_i, center_boxes.unsqueeze(1))
|
|
|
+ # [N, Mi]
|
|
|
+ is_in_boxes.append(center_deltas.min(dim=-1).values > 0)
|
|
|
+ # [N, M], M = M1 + M2 + ... + MF
|
|
|
+ is_in_boxes = torch.cat(is_in_boxes, dim=1)
|
|
|
+ else:
|
|
|
+ # no center sampling, it will use all the locations within a ground-truth box
|
|
|
+ # [N, M], M = M1 + M2 + ... + MF
|
|
|
+ is_in_boxes = deltas.min(dim=-1).values > 0
|
|
|
+ # [N, M], M = M1 + M2 + ... + MF
|
|
|
+ max_deltas = deltas.max(dim=-1).values
|
|
|
+ # limit the regression range for each location
|
|
|
+ is_cared_in_the_level = \
|
|
|
+ (max_deltas >= object_sizes_of_interest[None, :, 0]) & \
|
|
|
+ (max_deltas <= object_sizes_of_interest[None, :, 1])
|
|
|
+
|
|
|
+ # [N,]
|
|
|
+ tgt_box_area = (tgt_box[:, 2] - tgt_box[:, 0]) * (tgt_box[:, 3] - tgt_box[:, 1])
|
|
|
+ # [N,] -> [N, 1] -> [N, M]
|
|
|
+ gt_positions_area = tgt_box_area.unsqueeze(1).repeat(
|
|
|
+ 1, anchors_over_all_feature_maps.size(0))
|
|
|
+ gt_positions_area[~is_in_boxes] = math.inf
|
|
|
+ gt_positions_area[~is_cared_in_the_level] = math.inf
|
|
|
+
|
|
|
+ # if there are still more than one objects for a position,
|
|
|
+ # we choose the one with minimal area
|
|
|
+ # [M,], each element is the index of ground-truth
|
|
|
+ positions_min_area, gt_matched_idxs = gt_positions_area.min(dim=0)
|
|
|
+
|
|
|
+ # ground truth box regression
|
|
|
+ # [M, 4]
|
|
|
+ gt_anchors_reg_deltas_i = self.get_deltas(
|
|
|
+ anchors_over_all_feature_maps, tgt_box[gt_matched_idxs])
|
|
|
+
|
|
|
+ # [M,]
|
|
|
+ tgt_cls_i = tgt_cls[gt_matched_idxs]
|
|
|
+ # anchors with area inf are treated as background.
|
|
|
+ tgt_cls_i[positions_min_area == math.inf] = self.num_classes
|
|
|
+
|
|
|
+ # ground truth centerness
|
|
|
+ left_right = gt_anchors_reg_deltas_i[:, [0, 2]]
|
|
|
+ top_bottom = gt_anchors_reg_deltas_i[:, [1, 3]]
|
|
|
+ # [M,]
|
|
|
+ gt_centerness_i = torch.sqrt(
|
|
|
+ (left_right.min(dim=-1).values / left_right.max(dim=-1).values).clamp_(min=0)
|
|
|
+ * (top_bottom.min(dim=-1).values / top_bottom.max(dim=-1).values).clamp_(min=0)
|
|
|
+ )
|
|
|
+
|
|
|
+ gt_classes.append(tgt_cls_i)
|
|
|
+ gt_anchors_deltas.append(gt_anchors_reg_deltas_i)
|
|
|
+ gt_centerness.append(gt_centerness_i)
|
|
|
+
|
|
|
+ del centers, center_boxes, deltas, max_deltas, center_deltas
|
|
|
+
|
|
|
+ else:
|
|
|
+ tgt_cls_i = torch.zeros(anchors_over_all_feature_maps.shape[0], device=device) + self.num_classes
|
|
|
+ gt_anchors_reg_deltas_i = torch.zeros([anchors_over_all_feature_maps.shape[0], 4], device=device)
|
|
|
+ gt_centerness_i = torch.zeros(anchors_over_all_feature_maps.shape[0], device=device)
|
|
|
+
|
|
|
+ gt_classes.append(tgt_cls_i.long())
|
|
|
+ gt_anchors_deltas.append(gt_anchors_reg_deltas_i.float())
|
|
|
+ gt_centerness.append(gt_centerness_i.float())
|
|
|
+
|
|
|
+
|
|
|
+ # [B, M], [B, M, 4], [B, M]
|
|
|
+ return torch.stack(gt_classes), torch.stack(gt_anchors_deltas), torch.stack(gt_centerness)
|
|
|
+
|
|
|
+
|
|
|
+class AlignedOTAMatcher(object):
|
|
|
+ """
|
|
|
+ This code referenced to https://github.com/open-mmlab/mmyolo/models/task_modules/assigners/batch_dsl_assigner.py
|
|
|
+ """
|
|
|
+ def __init__(self, num_classes, soft_center_radius=3.0, topk_candidates=13):
|
|
|
+ self.num_classes = num_classes
|
|
|
+ self.soft_center_radius = soft_center_radius
|
|
|
+ self.topk_candidates = topk_candidates
|
|
|
+
|
|
|
+ @torch.no_grad()
|
|
|
+ def __call__(self,
|
|
|
+ fpn_strides,
|
|
|
+ anchors,
|
|
|
+ pred_cls,
|
|
|
+ pred_box,
|
|
|
+ gt_labels,
|
|
|
+ gt_bboxes):
|
|
|
+ # [M,]
|
|
|
+ strides = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
|
|
|
+ for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1)
|
|
|
+ # List[F, M, 2] -> [M, 2]
|
|
|
+ num_gt = len(gt_labels)
|
|
|
+ anchors = torch.cat(anchors, dim=0)
|
|
|
+
|
|
|
+ # check gt
|
|
|
+ if num_gt == 0 or gt_bboxes.max().item() == 0.:
|
|
|
+ return {
|
|
|
+ 'assigned_labels': gt_labels.new_full(pred_cls[..., 0].shape,
|
|
|
+ self.num_classes,
|
|
|
+ dtype=torch.long),
|
|
|
+ 'assigned_bboxes': gt_bboxes.new_full(pred_box.shape, 0),
|
|
|
+ 'assign_metrics': gt_bboxes.new_full(pred_cls[..., 0].shape, 0)
|
|
|
+ }
|
|
|
+
|
|
|
+ # get inside points: [N, M]
|
|
|
+ is_in_gt = self.find_inside_points(gt_bboxes, anchors)
|
|
|
+ valid_mask = is_in_gt.sum(dim=0) > 0 # [M,]
|
|
|
+
|
|
|
+ # ----------------------------------- soft center prior -----------------------------------
|
|
|
+ gt_center = (gt_bboxes[..., :2] + gt_bboxes[..., 2:]) / 2.0
|
|
|
+ distance = (anchors.unsqueeze(0) - gt_center.unsqueeze(1)
|
|
|
+ ).pow(2).sum(-1).sqrt() / strides.unsqueeze(0) # [N, M]
|
|
|
+ distance = distance * valid_mask.unsqueeze(0)
|
|
|
+ soft_center_prior = torch.pow(10, distance - self.soft_center_radius)
|
|
|
+
|
|
|
+ # ----------------------------------- regression cost -----------------------------------
|
|
|
+ pair_wise_ious, _ = box_iou(gt_bboxes, pred_box) # [N, M]
|
|
|
+ pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8) * 3.0
|
|
|
+
|
|
|
+ # ----------------------------------- classification cost -----------------------------------
|
|
|
+ ## select the predicted scores corresponded to the gt_labels
|
|
|
+ pairwise_pred_scores = pred_cls.permute(1, 0) # [M, C] -> [C, M]
|
|
|
+ pairwise_pred_scores = pairwise_pred_scores[gt_labels.long(), :].float() # [N, M]
|
|
|
+ ## scale factor
|
|
|
+ scale_factor = (pair_wise_ious - pairwise_pred_scores.sigmoid()).abs().pow(2.0)
|
|
|
+ ## cls cost
|
|
|
+ pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
|
|
|
+ pairwise_pred_scores, pair_wise_ious,
|
|
|
+ reduction="none") * scale_factor # [N, M]
|
|
|
+
|
|
|
+ del pairwise_pred_scores
|
|
|
+
|
|
|
+ ## foreground cost matrix
|
|
|
+ cost_matrix = pair_wise_cls_loss + pair_wise_ious_loss + soft_center_prior
|
|
|
+ max_pad_value = torch.ones_like(cost_matrix) * 1e9
|
|
|
+ cost_matrix = torch.where(valid_mask[None].repeat(num_gt, 1), # [N, M]
|
|
|
+ cost_matrix, max_pad_value)
|
|
|
+
|
|
|
+ # ----------------------------------- dynamic label assignment -----------------------------------
|
|
|
+ matched_pred_ious, matched_gt_inds, fg_mask_inboxes = self.dynamic_k_matching(
|
|
|
+ cost_matrix, pair_wise_ious, num_gt)
|
|
|
+ del pair_wise_cls_loss, cost_matrix, pair_wise_ious, pair_wise_ious_loss
|
|
|
+
|
|
|
+ # -----------------------------------process assigned labels -----------------------------------
|
|
|
+ assigned_labels = gt_labels.new_full(pred_cls[..., 0].shape,
|
|
|
+ self.num_classes) # [M,]
|
|
|
+ assigned_labels[fg_mask_inboxes] = gt_labels[matched_gt_inds].squeeze(-1)
|
|
|
+ assigned_labels = assigned_labels.long() # [M,]
|
|
|
+
|
|
|
+ assigned_bboxes = gt_bboxes.new_full(pred_box.shape, 0) # [M, 4]
|
|
|
+ assigned_bboxes[fg_mask_inboxes] = gt_bboxes[matched_gt_inds] # [M, 4]
|
|
|
+
|
|
|
+ assign_metrics = gt_bboxes.new_full(pred_cls[..., 0].shape, 0) # [M,]
|
|
|
+ assign_metrics[fg_mask_inboxes] = matched_pred_ious # [M,]
|
|
|
+
|
|
|
+ assigned_dict = dict(
|
|
|
+ assigned_labels=assigned_labels,
|
|
|
+ assigned_bboxes=assigned_bboxes,
|
|
|
+ assign_metrics=assign_metrics
|
|
|
+ )
|
|
|
+
|
|
|
+ return assigned_dict
|
|
|
+
|
|
|
+ def find_inside_points(self, gt_bboxes, anchors):
|
|
|
+ """
|
|
|
+ gt_bboxes: Tensor -> [N, 2]
|
|
|
+ anchors: Tensor -> [M, 2]
|
|
|
+ """
|
|
|
+ num_anchors = anchors.shape[0]
|
|
|
+ num_gt = gt_bboxes.shape[0]
|
|
|
+
|
|
|
+ anchors_expand = anchors.unsqueeze(0).repeat(num_gt, 1, 1) # [N, M, 2]
|
|
|
+ gt_bboxes_expand = gt_bboxes.unsqueeze(1).repeat(1, num_anchors, 1) # [N, M, 4]
|
|
|
+
|
|
|
+ # offset
|
|
|
+ lt = anchors_expand - gt_bboxes_expand[..., :2]
|
|
|
+ rb = gt_bboxes_expand[..., 2:] - anchors_expand
|
|
|
+ bbox_deltas = torch.cat([lt, rb], dim=-1)
|
|
|
+
|
|
|
+ is_in_gts = bbox_deltas.min(dim=-1).values > 0
|
|
|
+
|
|
|
+ return is_in_gts
|
|
|
+
|
|
|
+ def dynamic_k_matching(self, cost_matrix, pairwise_ious, num_gt):
|
|
|
+ """Use IoU and matching cost to calculate the dynamic top-k positive
|
|
|
+ targets.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ cost_matrix (Tensor): Cost matrix.
|
|
|
+ pairwise_ious (Tensor): Pairwise iou matrix.
|
|
|
+ num_gt (int): Number of gt.
|
|
|
+ valid_mask (Tensor): Mask for valid bboxes.
|
|
|
+ Returns:
|
|
|
+ tuple: matched ious and gt indexes.
|
|
|
+ """
|
|
|
+ matching_matrix = torch.zeros_like(cost_matrix, dtype=torch.uint8)
|
|
|
+ # select candidate topk ious for dynamic-k calculation
|
|
|
+ candidate_topk = min(self.topk_candidates, pairwise_ious.size(1))
|
|
|
+ topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=1)
|
|
|
+ # calculate dynamic k for each gt
|
|
|
+ dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
|
|
|
+
|
|
|
+ # sorting the batch cost matirx is faster than topk
|
|
|
+ _, sorted_indices = torch.sort(cost_matrix, dim=1)
|
|
|
+ for gt_idx in range(num_gt):
|
|
|
+ topk_ids = sorted_indices[gt_idx, :dynamic_ks[gt_idx]]
|
|
|
+ matching_matrix[gt_idx, :][topk_ids] = 1
|
|
|
+
|
|
|
+ del topk_ious, dynamic_ks, topk_ids
|
|
|
+
|
|
|
+ prior_match_gt_mask = matching_matrix.sum(0) > 1
|
|
|
+ if prior_match_gt_mask.sum() > 0:
|
|
|
+ cost_min, cost_argmin = torch.min(
|
|
|
+ cost_matrix[:, prior_match_gt_mask], dim=0)
|
|
|
+ matching_matrix[:, prior_match_gt_mask] *= 0
|
|
|
+ matching_matrix[cost_argmin, prior_match_gt_mask] = 1
|
|
|
+
|
|
|
+ # get foreground mask inside box and center prior
|
|
|
+ fg_mask_inboxes = matching_matrix.sum(0) > 0
|
|
|
+ matched_pred_ious = (matching_matrix *
|
|
|
+ pairwise_ious).sum(0)[fg_mask_inboxes]
|
|
|
+ matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
|
|
+
|
|
|
+ return matched_pred_ious, matched_gt_inds, fg_mask_inboxes
|
|
|
+
|