@@ -69,7 +69,7 @@ class YoloTrainer(object):
# ---------------------------- Build LR Scheduler ----------------------------
warmup_iters = cfg.warmup_epoch * len(self.train_loader)
- self.lr_scheduler_warmup = LinearWarmUpLrScheduler(warmup_iters, cfg.base_lr, cfg.warmup_bias_lr, cfg.warmup_momentum)
+ self.lr_scheduler_warmup = LinearWarmUpLrScheduler(warmup_iters, cfg.base_lr, cfg.warmup_bias_lr)
self.lr_scheduler = build_lr_scheduler(cfg, self.optimizer, args.resume)
def train(self, model):
@@ -373,14 +373,6 @@ def load_weight(model, path_to_ckpt, fuse_cbn=False, fuse_rep_conv=False):
return model
-def get_total_grad_norm(parameters, norm_type=2):
- parameters = list(filter(lambda p: p.grad is not None, parameters))
- norm_type = float(norm_type)
- device = parameters[0].grad.device
- total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]),
- norm_type)
- return total_norm
-
## Model EMA
class ModelEMA(object):
def __init__(self, model, ema_decay=0.9999, ema_tau=2000, resume=None):
@@ -5,9 +5,8 @@ import torch
# ------------------------- WarmUp LR Scheduler -------------------------
## Warmup LR Scheduler
class LinearWarmUpLrScheduler(object):
- def __init__(self, wp_iter=500, base_lr=0.01, warmup_bias_lr=0.1, warmup_momentum=0.8):
+ def __init__(self, wp_iter=500, base_lr=0.01, warmup_bias_lr=0.0):
self.wp_iter = wp_iter
- self.warmup_momentum = warmup_momentum
self.base_lr = base_lr
self.warmup_bias_lr = warmup_bias_lr