lr_scheduler.py 646 B

12345678910111213141516171819202122
  1. import math
  2. import torch
  3. def build_lr_scheduler(cfg, optimizer, epochs):
  4. """Build learning rate scheduler from cfg file."""
  5. print('==============================')
  6. print('Lr Scheduler: {}'.format(cfg['scheduler']))
  7. if cfg['scheduler'] == 'cosine':
  8. lf = lambda x: ((1 - math.cos(x * math.pi / epochs)) / 2) * (cfg['lrf'] - 1) + 1
  9. elif cfg['scheduler'] == 'linear':
  10. lf = lambda x: (1 - x / epochs) * (1.0 - cfg['lrf']) + cfg['lrf']
  11. else:
  12. print('unknown lr scheduler.')
  13. exit(0)
  14. scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  15. return scheduler, lf