| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- import argparse
- import os
- from copy import deepcopy
- import torch
- from evaluator.voc_evaluator import VOCAPIEvaluator
- from evaluator.coco_evaluator import COCOAPIEvaluator
- # load transform
- from dataset.data_augment import build_transform
- # load some utils
- from utils.misc import load_weight
- from utils.com_flops_params import FLOPs_and_Params
- from models import build_model
- from config import build_model_config, build_trans_config
- def parse_args():
- parser = argparse.ArgumentParser(description='YOLO-Tutorial')
- # basic
- parser.add_argument('-size', '--img_size', default=640, type=int,
- help='the max size of input image')
- parser.add_argument('--cuda', action='store_true', default=False,
- help='Use cuda')
- # model
- parser.add_argument('-m', '--model', default='yolov1', type=str,
- choices=['yolov1', 'yolov2', 'yolov3', 'yolov4', 'yolox'], help='build yolo')
- parser.add_argument('--weight', default=None,
- type=str, help='Trained state_dict file path to open')
- parser.add_argument('--conf_thresh', default=0.001, type=float,
- help='NMS threshold')
- parser.add_argument('--nms_thresh', default=0.6, type=float,
- help='NMS threshold')
- parser.add_argument('--topk', default=1000, type=int,
- help='topk candidates for testing')
- parser.add_argument("--no_decode", action="store_true", default=False,
- help="not decode in inference or yes")
- # dataset
- parser.add_argument('--root', default='/mnt/share/ssd2/dataset',
- help='data root')
- parser.add_argument('-d', '--dataset', default='coco',
- help='coco, voc.')
- # TTA
- parser.add_argument('-tta', '--test_aug', action='store_true', default=False,
- help='use test augmentation.')
- return parser.parse_args()
- def voc_test(model, data_dir, device, transform):
- evaluator = VOCAPIEvaluator(data_dir=data_dir,
- device=device,
- transform=transform,
- display=True)
- # VOC evaluation
- evaluator.evaluate(model)
- def coco_test(model, data_dir, device, transform, test=False):
- if test:
- # test-dev
- print('test on test-dev 2017')
- evaluator = COCOAPIEvaluator(
- data_dir=data_dir,
- device=device,
- testset=True,
- transform=transform)
- else:
- # eval
- evaluator = COCOAPIEvaluator(
- data_dir=data_dir,
- device=device,
- testset=False,
- transform=transform)
- # COCO evaluation
- evaluator.evaluate(model)
- if __name__ == '__main__':
- args = parse_args()
- # cuda
- if args.cuda:
- print('use cuda')
- device = torch.device("cuda")
- else:
- device = torch.device("cpu")
- # dataset
- if args.dataset == 'voc':
- print('eval on voc ...')
- num_classes = 20
- data_dir = os.path.join(args.root, 'VOCdevkit')
- elif args.dataset == 'coco-val':
- print('eval on coco-val ...')
- num_classes = 80
- data_dir = os.path.join(args.root, 'COCO')
- elif args.dataset == 'coco-test':
- print('eval on coco-test-dev ...')
- num_classes = 80
- data_dir = os.path.join(args.root, 'COCO')
- else:
- print('unknow dataset !! we only support voc, coco-val, coco-test !!!')
- exit(0)
- # config
- model_cfg = build_model_config(args)
- trans_cfg = build_trans_config(model_cfg['trans_type'])
- # build model
- model = build_model(args, model_cfg, device, num_classes, False)
- # load trained weight
- model = load_weight(model=model, path_to_ckpt=args.weight)
- model.to(device).eval()
- # compute FLOPs and Params
- model_copy = deepcopy(model)
- model_copy.trainable = False
- model_copy.eval()
- FLOPs_and_Params(
- model=model_copy,
- img_size=args.img_size,
- device=device)
- del model_copy
- # transform
- transform = build_transform(args.img_size, trans_cfg, is_train=False)
- # evaluation
- with torch.no_grad():
- if args.dataset == 'voc':
- voc_test(model, data_dir, device, transform)
- elif args.dataset == 'coco-val':
- coco_test(model, data_dir, device, transform, test=False)
- elif args.dataset == 'coco-test':
- coco_test(model, data_dir, device, transform, test=True)
|