| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- #!/usr/bin/env python3
- # -*- coding:utf-8 -*-
- # Copyright (c) Megvii, Inc. and its affiliates.
- # Thanks to YOLOX: https://github.com/Megvii-BaseDetection/YOLOX/blob/main/tools/export_onnx.py
- import argparse
- import os
- from loguru import logger
- import sys
- sys.path.append('..')
- import torch
- from torch import nn
- from utils.misc import SiLU
- from utils.misc import load_weight, replace_module
- from config import build_model_config
- from models.detectors import build_model
- def make_parser():
- parser = argparse.ArgumentParser("YOLO ONNXRuntime")
- # basic
- parser.add_argument('-size', '--img_size', default=640, type=int,
- help='the max size of input image')
- parser.add_argument("--input", default="images", type=str,
- help="input node name of onnx model")
- parser.add_argument("--output", default="output", type=str,
- help="output node name of onnx model")
- parser.add_argument("-o", "--opset", default=11, type=int,
- help="onnx opset version")
- parser.add_argument("--batch-size", type=int, default=1,
- help="batch size")
- parser.add_argument("--dynamic", action="store_true", default=False,
- help="whether the input shape should be dynamic or not")
- parser.add_argument("--no-onnxsim", action="store_true", default=False,
- help="use onnxsim or not")
- parser.add_argument("-f", "--exp_file", default=None, type=str,
- help="experiment description file")
- parser.add_argument("-expn", "--experiment-name", type=str, default=None)
- parser.add_argument("opts", default=None, nargs=argparse.REMAINDER,
- help="Modify config options using the command-line")
- parser.add_argument('--save_dir', default='../weights/onnx/', type=str,
- help='Dir to save onnx file')
- # model
- parser.add_argument('-m', '--model', default='yolov1', type=str,
- help='build yolo')
- parser.add_argument('--weight', default=None,
- type=str, help='Trained state_dict file path to open')
- parser.add_argument('-ct', '--conf_thresh', default=0.1, type=float,
- help='confidence threshold')
- parser.add_argument('-nt', '--nms_thresh', default=0.5, type=float,
- help='NMS threshold')
- parser.add_argument('--topk', default=100, type=int,
- help='topk candidates for testing')
- parser.add_argument('-nc', '--num_classes', default=80, type=int,
- help='topk candidates for testing')
- parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
- help='fuse Conv & BN')
- parser.add_argument('--nms_class_agnostic', action='store_true', default=False,
- help='Perform NMS operations regardless of category.')
-
- return parser
- @logger.catch
- def main():
- args = make_parser().parse_args()
- logger.info("args value: {}".format(args))
- device = torch.device('cpu')
- # Dataset & Model Config
- model_cfg = build_model_config(args)
- # build model
- model = build_model(args, model_cfg, device, args.num_classes, False, deploy=True)
- # replace nn.SiLU with SiLU
- model = replace_module(model, nn.SiLU, SiLU)
- # load trained weight
- model = load_weight(model, args.weight, args.fuse_conv_bn)
- model = model.to(device).eval()
- logger.info("loading checkpoint done.")
- dummy_input = torch.randn(args.batch_size, 3, args.img_size, args.img_size)
- # save onnx file
- save_path = os.path.join(args.save_dir, str(args.opset))
- os.makedirs(save_path, exist_ok=True)
- output_name = os.path.join(args.model + '.onnx')
- output_path = os.path.join(save_path, output_name)
- torch.onnx._export(
- model,
- dummy_input,
- output_path,
- input_names=[args.input],
- output_names=[output_name],
- dynamic_axes={args.input: {0: 'batch'},
- output_name: {0: 'batch'}} if args.dynamic else None,
- opset_version=args.opset,
- )
- logger.info("generated onnx model named {}".format(output_path))
- if not args.no_onnxsim:
- import onnx
- from onnxsim import simplify
- input_shapes = {args.input: list(dummy_input.shape)} if args.dynamic else None
- # use onnxsimplify to reduce reduent model.
- onnx_model = onnx.load(output_path)
- model_simp, check = simplify(onnx_model,
- dynamic_input_shape=args.dynamic,
- input_shapes=input_shapes)
- assert check, "Simplified ONNX model could not be validated"
- # save onnxsim file
- save_path = os.path.join(save_path, 'onnxsim')
- os.makedirs(save_path, exist_ok=True)
- output_path = os.path.join(save_path, output_name)
- onnx.save(model_simp, output_path)
- logger.info("generated simplified onnx model named {}".format(output_path))
- if __name__ == "__main__":
- main()
|