__init__.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. # ------------------ Dataset Config ------------------
  2. from .data_config.dataset_config import dataset_cfg
  3. def build_dataset_config(args):
  4. if args.dataset in ['coco', 'coco-val', 'coco-test']:
  5. cfg = dataset_cfg['coco']
  6. else:
  7. cfg = dataset_cfg[args.dataset]
  8. print('==============================')
  9. print('Dataset Config: {} \n'.format(cfg))
  10. return cfg
  11. # ------------------ Transform Config ------------------
  12. from .data_config.transform_config import (
  13. # SSD-Style
  14. ssd_trans_config,
  15. # YOLOv5-Style
  16. yolo_p_trans_config,
  17. yolo_n_trans_config,
  18. yolo_s_trans_config,
  19. yolo_m_trans_config,
  20. yolo_l_trans_config,
  21. yolo_x_trans_config,
  22. # YOLOX-Style
  23. yolox_p_trans_config,
  24. yolox_n_trans_config,
  25. yolox_s_trans_config,
  26. yolox_m_trans_config,
  27. yolox_l_trans_config,
  28. yolox_x_trans_config,
  29. )
  30. def build_trans_config(trans_config='ssd'):
  31. print('==============================')
  32. print('Transform: {}-Style ...'.format(trans_config))
  33. # SSD-style transform
  34. if trans_config == 'ssd':
  35. cfg = ssd_trans_config
  36. # YOLOv5-style transform
  37. elif trans_config == 'yolo_p':
  38. cfg = yolo_p_trans_config
  39. elif trans_config == 'yolo_n':
  40. cfg = yolo_n_trans_config
  41. elif trans_config == 'yolo_s':
  42. cfg = yolo_s_trans_config
  43. elif trans_config == 'yolo_m':
  44. cfg = yolo_m_trans_config
  45. elif trans_config == 'yolo_l':
  46. cfg = yolo_l_trans_config
  47. elif trans_config == 'yolo_x':
  48. cfg = yolo_x_trans_config
  49. # YOLOX-style transform
  50. elif trans_config == 'yolox_p':
  51. cfg = yolox_p_trans_config
  52. elif trans_config == 'yolox_n':
  53. cfg = yolox_n_trans_config
  54. elif trans_config == 'yolox_s':
  55. cfg = yolox_s_trans_config
  56. elif trans_config == 'yolox_m':
  57. cfg = yolox_m_trans_config
  58. elif trans_config == 'yolox_l':
  59. cfg = yolox_l_trans_config
  60. elif trans_config == 'yolox_x':
  61. cfg = yolox_x_trans_config
  62. else:
  63. raise NotImplementedError("Unknown transform config: {}".format(trans_config))
  64. print('Transform Config: {} \n'.format(cfg))
  65. return cfg
  66. # ------------------ Model Config ------------------
  67. ## YOLO series
  68. from .model_config.yolov1_config import yolov1_cfg
  69. from .model_config.yolov2_config import yolov2_cfg
  70. from .model_config.yolov3_config import yolov3_cfg
  71. from .model_config.yolov4_config import yolov4_cfg
  72. from .model_config.yolov5_config import yolov5_cfg
  73. from .model_config.yolov7_config import yolov7_cfg
  74. from .model_config.yolov8_config import yolov8_cfg
  75. from .model_config.yolox_config import yolox_cfg
  76. def build_model_config(args):
  77. print('==============================')
  78. print('Model: {} ...'.format(args.model.upper()))
  79. # YOLOv1
  80. if args.model == 'yolov1':
  81. cfg = yolov1_cfg
  82. # YOLOv2
  83. elif args.model == 'yolov2':
  84. cfg = yolov2_cfg
  85. # YOLOv3
  86. elif args.model in ['yolov3', 'yolov3_tiny']:
  87. cfg = yolov3_cfg[args.model]
  88. # YOLOv4
  89. elif args.model in ['yolov4', 'yolov4_tiny']:
  90. cfg = yolov4_cfg[args.model]
  91. # YOLOv5
  92. elif args.model in ['yolov5_n', 'yolov5_s', 'yolov5_m', 'yolov5_l', 'yolov5_x']:
  93. cfg = yolov5_cfg[args.model]
  94. # YOLOv7
  95. elif args.model in ['yolov7_tiny', 'yolov7', 'yolov7_x']:
  96. cfg = yolov7_cfg[args.model]
  97. # YOLOv8
  98. elif args.model in ['yolov8_n', 'yolov8_s', 'yolov8_m', 'yolov8_l', 'yolov8_x']:
  99. cfg = yolov8_cfg[args.model]
  100. # YOLOX
  101. elif args.model in ['yolox_n', 'yolox_s', 'yolox_m', 'yolox_l', 'yolox_x']:
  102. cfg = yolox_cfg[args.model]
  103. return cfg